Suppr超能文献

通过分别分析生物学重复数据来反卷积逆转录定量实时聚合酶链反应的混杂变化。

Deconvolution of the confounding variations for reverse transcription quantitative real-time polymerase chain reaction by separate analysis of biological replicate data.

机构信息

Department of Neuroscience, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.

出版信息

Anal Biochem. 2012 Aug 1;427(1):21-5. doi: 10.1016/j.ab.2012.04.029. Epub 2012 May 2.

Abstract

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) uses threshold cycles (Ct values) for measuring relative gene expression. Ct values are signal-to-noise data composed of target gene expression and multiple sources of confounding variations. Data analysis is to minimize technical noises, evaluate biological variances, and estimate treatment-attributable expression changes of particular genes. However, this function is not sufficiently fulfilled in current analytic methods. An important but unrecognizable problem is that Ct values from all biological replicates and technical repeats are pooled across genes and treatment types. This violates the sample-specific association between target and reference genes, leading to inefficient removal of technical noises. To resolve this problem, here we propose to separate Ct values into replicate-specific data subsets and iteratively analyze expression ratios for individual data subsets. The individual expression ratios, rather than the raw Ct values, are pooled to determine the final expression change. The variances of all biological replicates and technical repeats across all target and reference genes are summed up. Our results from example data demonstrate that this separated method can substantially minimize RT-qPCR variance compared with the traditional methods using pooled Ct profiles. This analytic strategy is more effective in control of technical noises and improves the fidelity of RT-qPCR quantification.

摘要

逆转录定量实时聚合酶链反应 (RT-qPCR) 使用阈值循环 (Ct 值) 来测量相对基因表达。Ct 值是由目标基因表达和多种混杂变异源组成的信号与噪声数据。数据分析的目的是最小化技术噪声,评估生物学变异性,并估计特定基因的治疗归因表达变化。然而,目前的分析方法并没有充分实现这一功能。一个重要但未被认识到的问题是,所有生物学重复和技术重复的 Ct 值都在基因和处理类型之间进行了汇总。这违反了目标基因和参考基因之间的样本特异性关联,导致技术噪声去除效率低下。为了解决这个问题,我们建议将 Ct 值分为重复特异性数据子集,并对各个数据子集的表达比率进行迭代分析。将各个表达比率而不是原始 Ct 值进行汇总,以确定最终的表达变化。所有目标和参考基因的所有生物学重复和技术重复的方差都被加起来。我们从示例数据得到的结果表明,与使用汇总 Ct 曲线的传统方法相比,这种分离方法可以显著降低 RT-qPCR 的方差。这种分析策略在控制技术噪声方面更有效,提高了 RT-qPCR 定量的准确性。

相似文献

8
Identification of suitable reference genes in the mouse placenta.小鼠胎盘中合适内参基因的鉴定。
Placenta. 2016 Mar;39:7-15. doi: 10.1016/j.placenta.2015.12.017. Epub 2015 Dec 25.

本文引用的文献

8
Statistical aspects of quantitative real-time PCR experiment design.定量实时 PCR 实验设计的统计方面。
Methods. 2010 Apr;50(4):231-6. doi: 10.1016/j.ymeth.2010.01.025. Epub 2010 Jan 28.
10
Design and optimization of reverse-transcription quantitative PCR experiments.逆转录定量PCR实验的设计与优化
Clin Chem. 2009 Oct;55(10):1816-23. doi: 10.1373/clinchem.2009.126201. Epub 2009 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验