Suppr超能文献

在分析时间序列基因表达数据时复制的重要性:大鼠肝脏中皮质类固醇的动态变化和昼夜节律模式。

Importance of replication in analyzing time-series gene expression data: corticosteroid dynamics and circadian patterns in rat liver.

机构信息

BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey, USA.

出版信息

BMC Bioinformatics. 2010 May 26;11:279. doi: 10.1186/1471-2105-11-279.

Abstract

BACKGROUND

Microarray technology is a powerful and widely accepted experimental technique in molecular biology that allows studying genome wide transcriptional responses. However, experimental data usually contain potential sources of uncertainty and thus many experiments are now designed with repeated measurements to better assess such inherent variability. Many computational methods have been proposed to account for the variability in replicates. As yet, there is no model to output expression profiles accounting for replicate information so that a variety of computational models that take the expression profiles as the input data can explore this information without any modification.

RESULTS

We propose a methodology which integrates replicate variability into expression profiles, to generate so-called 'true' expression profiles. The study addresses two issues: (i) develop a statistical model that can estimate 'true' expression profiles which are more robust than the average profile, and (ii) extend our previous micro-clustering which was designed specifically for clustering time-series expression data. The model utilizes a previously proposed error model and the concept of 'relative difference'. The clustering effectiveness is demonstrated through synthetic data where several methods are compared. We subsequently analyze in vivo rat data to elucidate circadian transcriptional dynamics as well as liver-specific corticosteroid induced changes in gene expression.

CONCLUSIONS

We have proposed a model which integrates the error information from repeated measurements into the expression profiles. Through numerous synthetic and real time-series data, we demonstrated the ability of the approach to improve the clustering performance and assist in the identification and selection of informative expression motifs.

摘要

背景

微阵列技术是分子生物学中一种强大且被广泛接受的实验技术,可用于研究全基因组转录反应。然而,实验数据通常包含潜在的不确定来源,因此现在许多实验都设计了重复测量,以更好地评估这种固有变异性。已经提出了许多计算方法来解释重复测量中的变异性。到目前为止,还没有一种模型可以输出考虑到重复信息的表达谱,以便各种计算模型可以在不进行任何修改的情况下,利用这些表达谱作为输入数据来探索这些信息。

结果

我们提出了一种将重复测量中的变异性纳入表达谱的方法,以生成所谓的“真实”表达谱。该研究解决了两个问题:(i)开发一种能够估计“真实”表达谱的统计模型,该模型比平均谱更稳健,以及(ii)扩展我们之前专门为时间序列表达数据聚类而设计的微聚类。该模型利用了先前提出的误差模型和“相对差异”的概念。通过比较几种方法,在合成数据中验证了聚类的有效性。随后,我们分析了体内大鼠数据,以阐明昼夜转录动力学以及肝脏特异性皮质甾酮诱导的基因表达变化。

结论

我们提出了一种将重复测量中的误差信息纳入表达谱的模型。通过大量的合成和实时序列数据,我们证明了该方法能够提高聚类性能,并有助于识别和选择有意义的表达模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1137/2889936/ea0c9dab1b10/1471-2105-11-279-1.jpg

相似文献

4
A mixture model with random-effects components for clustering correlated gene-expression profiles.
Bioinformatics. 2006 Jul 15;22(14):1745-52. doi: 10.1093/bioinformatics/btl165. Epub 2006 May 3.
5
Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.
BMC Bioinformatics. 2008 Jun 18;9:288. doi: 10.1186/1471-2105-9-288.
6
Dynamic model-based clustering for time-course gene expression data.
J Bioinform Comput Biol. 2005 Aug;3(4):821-36. doi: 10.1142/s0219720005001314.
8
Bayesian infinite mixture model based clustering of gene expression profiles.
Bioinformatics. 2002 Sep;18(9):1194-206. doi: 10.1093/bioinformatics/18.9.1194.
9
A conditional density error model for the statistical analysis of microarray data.
Bioinformatics. 2002 Aug;18(8):1064-72. doi: 10.1093/bioinformatics/18.8.1064.
10
Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat.
PLoS One. 2018 Jun 12;13(6):e0197534. doi: 10.1371/journal.pone.0197534. eCollection 2018.

引用本文的文献

1
Time Series Transcriptome Analysis in Shoot and Root Tissue During Early Nodulation.
Front Plant Sci. 2022 Apr 7;13:861639. doi: 10.3389/fpls.2022.861639. eCollection 2022.
2
Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing.
Gene Regul Syst Bio. 2019 Apr 15;13:1177625019840282. doi: 10.1177/1177625019840282. eCollection 2019.
3
Understanding Physiology in the Continuum: Integration of Information from Multiple - Levels.
Front Pharmacol. 2017 Feb 27;8:91. doi: 10.3389/fphar.2017.00091. eCollection 2017.
4
TTCA: an R package for the identification of differentially expressed genes in time course microarray data.
BMC Bioinformatics. 2017 Jan 14;18(1):33. doi: 10.1186/s12859-016-1440-8.
5
Tissue-specific gene expression and regulation in liver and muscle following chronic corticosteroid administration.
Gene Regul Syst Bio. 2014 Mar 10;8:75-87. doi: 10.4137/GRSB.S13134. eCollection 2014.
6
Time series expression analyses using RNA-seq: a statistical approach.
Biomed Res Int. 2013;2013:203681. doi: 10.1155/2013/203681. Epub 2013 Mar 24.
7
Effect of fasting on the metabolic response of liver to experimental burn injury.
PLoS One. 2013;8(2):e54825. doi: 10.1371/journal.pone.0054825. Epub 2013 Feb 5.
8
Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.
BMC Syst Biol. 2011;5 Suppl 2(Suppl 2):S15. doi: 10.1186/1752-0509-5-S2-S15. Epub 2011 Dec 14.

本文引用的文献

1
Identification of global transcriptional dynamics.
PLoS One. 2009 Jul 10;4(7):e5992. doi: 10.1371/journal.pone.0005992.
3
Testing significance relative to a fold-change threshold is a TREAT.
Bioinformatics. 2009 Mar 15;25(6):765-71. doi: 10.1093/bioinformatics/btp053. Epub 2009 Jan 28.
4
Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.
BMC Bioinformatics. 2008 Jun 18;9:288. doi: 10.1186/1471-2105-9-288.
5
Circadian variations in rat liver gene expression: relationships to drug actions.
J Pharmacol Exp Ther. 2008 Sep;326(3):700-16. doi: 10.1124/jpet.108.140186. Epub 2008 Jun 18.
6
Model-based variance-stabilizing transformation for Illumina microarray data.
Nucleic Acids Res. 2008 Feb;36(2):e11. doi: 10.1093/nar/gkm1075. Epub 2008 Jan 4.
7
Power estimation of the t test for detecting differential gene expression.
Funct Integr Genomics. 2008 May;8(2):109-13. doi: 10.1007/s10142-007-0061-8. Epub 2007 Nov 13.
8
A microarray analysis of the temporal response of liver to methylprednisolone: a comparative analysis of two dosing regimens.
Endocrinology. 2007 May;148(5):2209-25. doi: 10.1210/en.2006-0790. Epub 2007 Feb 15.
9
Bioinformatics analysis of the early inflammatory response in a rat thermal injury model.
BMC Bioinformatics. 2007 Jan 10;8:10. doi: 10.1186/1471-2105-8-10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验