Suppr超能文献

在杏仁核中,突触抑制和膜振荡之间的相互作用增强了尖峰定时精度和神经元同步性。

Spike-timing precision and neuronal synchrony are enhanced by an interaction between synaptic inhibition and membrane oscillations in the amygdala.

机构信息

Division of Behavioral Neuroscience and Psychiatric Disorders, Department of Psychiatry and Behavioral Sciences, Yerkes Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America.

出版信息

PLoS One. 2012;7(4):e35320. doi: 10.1371/journal.pone.0035320. Epub 2012 Apr 26.

Abstract

The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2-6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine.

摘要

杏仁核基底外侧复合体(BLA)是调节恐惧学习的神经回路的关键组成部分。在恐惧学习和回忆过程中,杏仁核和其他大脑区域,包括海马体和前额叶皮层,在高δ/低θ频段(约 2-6 Hz)表现出相位锁定的振荡,这些振荡被证明有助于学习过程。网络振荡通常是由抑制性突触输入产生的,这种输入协调神经元群中的动作电位。在大鼠 BLA 中,主神经元以复合、节律性抑制性突触后电位(IPSP)的形式自发接收同步的抑制性输入,这些 IPSP 可能源自爆发式放电的 Parvalbumin 中间神经元。在这里,我们研究了复合 IPSP 在大鼠和恒河猴 BLA 中调节动作电位同步性和尖峰时间精度的作用。此外,由于主神经元表现出内在的振荡特性和在 4-5 Hz 之间的共振,这与恐惧期间观察到的频率相同,我们研究了复合 IPSP 和内在振荡是否相互作用以促进 BLA 中的节律性活动在这个频率。使用脑片全细胞膜片钳,我们证明了在大鼠和灵长类动物 BLA 中,自发发生并在主神经元之间同步的复合 IPSP,显著提高了 BLA 主神经元在每个 IPSP 后约 300 ms 的尖峰时间精度。我们还表明,复合 IPSP 协调 BLA 主神经元的成对放电,并显著提高尖峰同步性约 130 ms。复合 IPSP 增强了这些神经元中的 5 Hz 钙依赖性膜电位振荡(MPO),可能有助于提高尖峰时间精度和尖峰同步性。激活 cAMP-PKA 信号级联增强了 MPO,而抑制该级联则阻断了 MPO。我们将这些结果置于与尖峰时间依赖性可塑性以及与恐惧学习相关的神经递质(如多巴胺)的调制的背景下进行讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08fb/3338510/30d0bb414213/pone.0035320.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验