Klomp Anne, Tremoleda Jordi L, Schrantee Anouk, Gsell Willy, Reneman Liesbeth
Department of Radiology, Brain Imaging Center, Academic Medical Center Amsterdam.
J Vis Exp. 2012 Apr 25(62):3956. doi: 10.3791/3956.
Pharmacological MRI (phMRI) is a new and promising method to study the effects of substances on brain function that can ultimately be used to unravel underlying neurobiological mechanisms behind drug action and neurotransmitter-related disorders, such as depression and ADHD. Like most of the imaging methods (PET, SPECT, CT) it represents a progress in the investigation of brain disorders and the related function of neurotransmitter pathways in a non-invasive way with respect of the overall neuronal connectivity. Moreover it also provides the ideal tool for translation to clinical investigations. MRI, while still behind in molecular imaging strategies compared to PET and SPECT, has the great advantage to have a high spatial resolution and no need for the injection of a contrast-agent or radio-labeled molecules, thereby avoiding the repetitive exposure to ionizing radiations. Functional MRI (fMRI) is extensively used in research and clinical setting, where it is generally combined with a psycho-motor task. phMRI is an adaptation of fMRI enabling the investigation of a specific neurotransmitter system, such as serotonin (5-HT), under physiological or pathological conditions following activation via administration of a specific challenging drug. The aim of the method described here is to assess brain 5-HT function in free-breathing animals. By challenging the 5-HT system while simultaneously acquiring functional MR images over time, the response of the brain to this challenge can be visualized. Several studies in animals have already demonstrated that drug-induced increases in extracellular levels of e.g. 5-HT (releasing agents, selective re-uptake blockers, etc) evoke region-specific changes in blood oxygenation level dependent (BOLD) MRI signals (signal due to a change of the oxygenated/deoxygenated hemoglobin levels occurring during brain activation through an increase of the blood supply to supply the oxygen and glucose to the demanding neurons) providing an index of neurotransmitter function. It has also been shown that these effects can be reversed by treatments that decrease 5-HT availability(16,13,18,7). In adult rats, BOLD signal changes following acute SSRI administration have been described in several 5-HT related brain regions, i.e. cortical areas, hippocampus, hypothalamus and thalamus(9,16,15). Stimulation of the 5-HT system and its response to this challenge can be thus used as a measure of its function in both animals and humans(2,11).
药理磁共振成像(phMRI)是一种全新且颇具前景的方法,用于研究物质对脑功能的影响,最终可用于揭示药物作用以及与神经递质相关的疾病(如抑郁症和注意力缺陷多动障碍)背后潜在的神经生物学机制。与大多数成像方法(正电子发射断层扫描、单光子发射计算机断层扫描、计算机断层扫描)一样,它在以非侵入性方式研究脑疾病以及神经递质通路的相关功能方面,相对于整体神经元连接性而言是一大进步。此外,它还为转化为临床研究提供了理想工具。磁共振成像虽然在分子成像策略方面仍落后于正电子发射断层扫描和单光子发射计算机断层扫描,但具有空间分辨率高且无需注射造影剂或放射性标记分子的巨大优势,从而避免了反复暴露于电离辐射。功能磁共振成像(fMRI)在研究和临床环境中被广泛使用,通常与心理运动任务相结合。phMRI是fMRI的一种变体,能够在通过给予特定激发药物激活后,在生理或病理条件下研究特定的神经递质系统,如血清素(5 - HT)。此处所述方法的目的是评估自由呼吸动物的脑5 - HT功能。通过在同时随时间获取功能磁共振图像的情况下挑战5 - HT系统,可以可视化大脑对这种挑战的反应。多项动物研究已经表明,药物诱导的例如5 - HT细胞外水平升高(释放剂、选择性再摄取阻滞剂等)会引起血氧水平依赖(BOLD)磁共振信号的区域特异性变化(该信号是由于在大脑激活期间,通过增加血液供应以向有需求的神经元供应氧气和葡萄糖,导致氧合/脱氧血红蛋白水平发生变化而产生的),提供了神经递质功能的指标。研究还表明,这些效应可以通过降低5 - HT可用性的治疗方法来逆转(参考文献16、13、18、7)。在成年大鼠中,已经在几个与5 - HT相关的脑区,即皮质区域、海马体、下丘脑和丘脑,描述了急性给予选择性5 - 羟色胺再摄取抑制剂(SSRI)后BOLD信号的变化(参考文献9、16、15)。因此,刺激5 - HT系统及其对这种挑战的反应可作为其在动物和人类中功能的一种度量(参考文献2、11)。