Suppr超能文献

时分辨析血管造影术:过去、现在与未来。

Time-resolved angiography: Past, present, and future.

机构信息

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

出版信息

J Magn Reson Imaging. 2012 Dec;36(6):1273-86. doi: 10.1002/jmri.23646. Epub 2012 May 7.

Abstract

The introduction of digital subtraction angiography (DSA) in 1980 provided a method for real time 2D subtraction imaging. Later, 4D magnetic resonance (MR) angiography emerged beginning with techniques like Keyhole and time-resolved imaging of contrast kinetics (TRICKS) that provided frame rates of one every 5 seconds with limited spatial resolution. Undersampled radial acquisition was subsequently developed. The 3D vastly undersampled isotropic projection (VIPR) technique allowed undersampling factors of 30-40. Its combination with phase contrast displays time-resolved flow dynamics within the cardiac cycle and has enabled the measurement of pressure gradients in small vessels. Meanwhile similar accelerations were achieved using Cartesian acquisition with projection reconstruction (CAPR), a Cartesian acquisition with 2D parallel imaging. Further acceleration is provided by constrained reconstruction techniques such as highly constrained back-projection reconstruction (HYPR) and its derivatives, which permit acceleration factors approaching 1000. Hybrid MRA combines a separate phase contrast, time-of flight, or contrast-enhanced acquisition to constrain the reconstruction of contrast-enhanced time frames providing exceptional spatial and temporal resolution and signal-to-noise ratio (SNR). This can be extended to x-ray imaging where a 3D DSA examination can be used to constrain the reconstruction of time-resolved 3D volumes. Each 4D DSA (time-resolved 3D DSA) frame provides spatial resolution and SNR comparable to 3D DSA, thus removing a major limitation of intravenous DSA. Similar techniques have provided the ability to do 4D fluoroscopy.

摘要

数字减影血管造影(DSA)于 1980 年问世,为实时二维减影成像提供了一种方法。后来,随着 Keyhole 和对比剂动力学时间分辨成像(TRICKS)等技术的出现,出现了 4D 磁共振(MR)血管造影,其帧率为每秒 1 帧,空间分辨率有限。随后开发了欠采样径向采集技术。3D 极大欠采样各向同性投影(VIPR)技术允许欠采样因子为 30-40。它与相位对比显示相结合,可在心脏周期内显示时间分辨的流动动力学,并能够测量小血管中的压力梯度。同时,使用笛卡尔采集与投影重建(CAPR)、笛卡尔采集与 2D 并行成像,也可以实现类似的加速。通过约束重建技术(如高度约束的反向投影重建(HYPR)及其衍生物)进一步提高了速度,这些技术允许接近 1000 的加速因子。混合 MRA 将单独的相位对比、时飞或对比增强采集相结合,以约束对比增强时间帧的重建,提供卓越的空间和时间分辨率以及信噪比(SNR)。这可以扩展到 X 射线成像,其中 3D DSA 检查可用于约束时间分辨 3D 体积的重建。每个 4D DSA(时间分辨 3D DSA)帧提供的空间分辨率和 SNR 与 3D DSA 相当,从而消除了静脉内 DSA 的一个主要限制。类似的技术已经提供了进行 4D 透视的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验