Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8067-72. doi: 10.1073/pnas.1120964109. Epub 2012 May 7.
DNA polymerase substrate specificity is fundamental to genome integrity and to polymerase applications in biotechnology. In the current paradigm, active site geometry is the main site of specificity control. Here, we describe the discovery of a distinct specificity checkpoint located over 25 Å from the active site in the polymerase thumb subdomain. In Tgo, the replicative DNA polymerase from Thermococcus gorgonarius, we identify a single mutation (E664K) within this region that enables translesion synthesis across a template abasic site or a cyclobutane thymidine dimer. In conjunction with a classic "steric-gate" mutation (Y409G) in the active site, E664K transforms Tgo DNA polymerase into an RNA polymerase capable of synthesizing RNAs up to 1.7 kb long as well as fully pseudouridine-, 5-methyl-C-, 2'-fluoro-, or 2'-azido-modified RNAs primed from a wide range of primer chemistries comprising DNA, RNA, locked nucleic acid (LNA), or 2'O-methyl-DNA. We find that E664K enables RNA synthesis by selectively increasing polymerase affinity for the noncognate RNA/DNA duplex as well as lowering the K(m) for ribonucleotide triphosphate incorporation. This gatekeeper mutation therefore identifies a key missing step in the adaptive path from DNA to RNA polymerases and defines a previously unknown postsynthetic determinant of polymerase substrate specificity with implications for the synthesis and replication of noncognate nucleic acid polymers.
DNA 聚合酶的底物特异性对于基因组完整性以及聚合酶在生物技术中的应用至关重要。在当前的模式中,活性位点的几何形状是特异性控制的主要位点。在这里,我们描述了在聚合酶拇指结构域中距离活性位点超过 25 Å 的位置发现的一个独特的特异性检查点。在 Thermococcus gorgonarius 的复制 DNA 聚合酶 Tgo 中,我们在该区域内发现了一个单一突变(E664K),该突变能够使模板无碱基位点或环丁烷胸腺嘧啶二聚体发生跨损伤合成。与活性位点中的经典“空间障碍”突变(Y409G)结合使用时,E664K 将 Tgo DNA 聚合酶转化为能够合成长达 1.7 kb 的 RNA 的 RNA 聚合酶,以及能够完全假尿嘧啶化、5-甲基-C-、2'-氟-或 2'-叠氮修饰的 RNA,其引物化学范围广泛,包括 DNA、RNA、锁核酸(LNA)或 2'O-甲基-DNA。我们发现,E664K 通过选择性地增加聚合酶对非互补 RNA/DNA 双链的亲和力以及降低核糖核苷酸三磷酸掺入的 K(m)来促进 RNA 合成。因此,这个守门员突变确定了从 DNA 聚合酶到 RNA 聚合酶的适应性进化途径中缺失的关键步骤,并定义了聚合酶底物特异性的一个以前未知的合成后决定因素,这对非互补核酸聚合物的合成和复制具有重要意义。