Unit of Structural Dynamics of Biological Macromolecules, UMR 3528 du CNRS, Institut Pasteur, 25-28 rue du Dr Roux, 75015 Paris, France.
Division of Biological Sciences, Synchrotron SOLEIL, 91190 Saint Aubin, France.
Biomolecules. 2020 Dec 8;10(12):1647. doi: 10.3390/biom10121647.
Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants.
古菌 B 族 DNA 聚合酶(polB)在生物技术中具有重要的应用。此外,它们的一些变体可以接受广泛的修饰核苷酸或异源核苷酸,如 1,5-脱水己糖醇核酸(HNA),它具有与 DNA 和 RNA 选择性配对的独特能力。这种能力对于允许不同核酸分子的化学性质之间的信息传递是必不可少的。先前已经鉴定出来自 Thermococcus gorgonarius 的古菌聚合酶的变体,它们可以从 DNA 生成 HNA(TgoT_6G12)或从 HNA 生成 DNA(TgoT_RT521)。为了了解这两种实验室进化的聚合酶如何识别和选择 DNA 和 HNA,我们报告了这些变体的六个 X 射线结构,以及 HNA 的三元复合物的计算模型。TgoT_6G12 的无配体形式与其与 DNA 双链体的二元和三元复合物的结构比较突出了一系列相互作用和构象变化,这些变化对于促进 DNA 或 HNA 合成是必需的。三元复合物的 MD 模拟表明,HNA-DNA 杂交双链体在 A-DNA 螺旋形式下保持稳定,并有助于解释在不是 A 螺旋形式的情况下,如果不在 DNA 上,通常不会与之接触的区域中的突变的存在。令人惊讶的是,一个包含两个掺入的 HNA 核苷酸的复合物以一个核苷酸回溯的形式存在,这对于 DNA 聚合酶来说是新的。这些信息可用于工程设计新一代更有效的 HNA 聚合酶变体。