Eenheid Algemene Chemie, Vrije Universiteit Brussel (VUB), Faculteit Wetenschappen, Pleinlaan 2, 1050 Brussels, Belgium.
Phys Chem Chem Phys. 2012 Jun 14;14(22):8058-66. doi: 10.1039/c2cp40885f. Epub 2012 May 9.
We have investigated aqueous Al-dimer complexes using density functional theory methods (e.g. the B3LYP exchange-correlation functional and the 6-311++G(d,p) basis set). In these calculations interactions between the Al(3+) cations and the H(2)O or OH(-) coordinating ligands are considered explicitly while the second hydration shell and remaining solvent are treated as a continuum under the IEF-PCM formalism. The Al-dimer chemical reactivity is discussed by analysis of changes in geometry, electronic structure and Gibbs free energy of formation, relative to two independent Al(H(2)O) monomers, as a function of water and hydroxide coordination. Our results indicate that the mechanism of cooperativity, i.e. decreased Al-water bond stability with increasing OH(-) coordination and increased water ligand hydrolysis as complex CN decreases, is operating on the dimer species and that, therefore, a wide variety of dimer species are available. While the stability of these species is observed to be dependent on the number of water and hydroxide ligands, the hydroxide bridging structure (singly, doubly and triply bridged species are considered) does not appear to correlate with dimer stability. Interestingly, intra-molecular H-bonds (in the form of the well known H(3)O bridge as well as two bridging structures, H(4)O(2) and H(2)O, that have not, to our knowledge, been previously considered) are observed to influence dimer stability. The evaluation of the equilibrium mole fraction of the dimer species in equilibrium with the aqueous Al(3+) monomer species of our previous study displays the qualitatively correct trend of solution composition as pH increases, namely monomeric aqueous Al(3+) and Al(OH) complexes dominate at low and high pH, respectively, and all remaining monomer and dimer species exist at intermediate pH. Further refinement of our data set by eliminating dimer complexes with OH/Al ratios greater than 2.6 brings our predicted equilibrium mole fraction distributions into excellent agreement with experimental observations. The triply bridged dimer is observed in low amounts while the singly and doubly bridged dimers dominate our model system at pH = ∼4-7.
我们使用密度泛函理论方法(例如 B3LYP 交换相关函数和 6-311++G(d,p)基组)研究了含水 Al-二聚体配合物。在这些计算中,明确考虑了 Al(3+)阳离子与 H(2)O 或 OH(-)配位配体之间的相互作用,而第二水合壳层和剩余溶剂在 IEF-PCM 形式下被视为连续体。通过分析几何形状、电子结构和形成吉布斯自由能的变化,讨论了 Al-二聚体的化学反应性,相对于两个独立的 Al(H(2)O)单体,作为水和氢氧化物配位的函数。我们的结果表明,协同作用的机制,即随着 OH(-)配位的增加和作为配合物 CN 减少的水配体水解的增加,Al-水键的稳定性降低,作用于二聚体物种,因此,存在各种二聚体物种。虽然这些物种的稳定性被观察到取决于水和氢氧化物配体的数量,但氢氧化物桥接结构(单桥、双桥和三桥物种都被考虑)似乎与二聚体稳定性不相关。有趣的是,观察到分子内氢键(以众所周知的 H(3)O 桥以及两种桥接结构 H(4)O(2)和 H(2)O 的形式存在,据我们所知,以前没有考虑过)会影响二聚体的稳定性。我们之前研究中与含水 Al(3+)单体物种平衡的二聚体物种的平衡摩尔分数的评估显示了溶液组成随 pH 增加的定性正确趋势,即低 pH 时单体含水 Al(3+)和 Al(OH)配合物占主导地位,高 pH 时分别是单体和二聚体物种在中间 pH 存在。通过消除 OH/Al 比大于 2.6 的二聚体配合物进一步细化我们的数据集,使我们预测的平衡摩尔分数分布与实验观察结果非常吻合。观察到三桥联二聚体的含量较低,而单桥联和双桥联二聚体在我们的模型体系中在 pH = ∼4-7 时占主导地位。