Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
J R Soc Interface. 2012 Oct 7;9(75):2591-602. doi: 10.1098/rsif.2012.0186. Epub 2012 May 9.
The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I-III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s(-1)) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s(-1) s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s(-1) with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s(-1)). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16-79 s(-1)) during phase I. (III) The air flow velocity decays again after the fly has passed the spider.
狩猎蜘蛛 Cupiennius salei 利用昆虫飞行时产生的气流来引导其捕食跳跃。我们研究了靠近蜘蛛腿上的气流传感器自由飞行的苍蝇产生的气流速度场。结果显示出三个特征阶段 (I-III)。(I) 在接近时,苍蝇在蜘蛛附近诱导气流信号,其波动很小(0.013 ± 0.006 m s(-1)),强度随时间近乎指数增长(最大值:0.164 ± 0.051 m s(-1) s.d.)。苍蝇距离蜘蛛 38.4 ± 5.6 mm 时,蜘蛛就会检测到这种流动。气流传感器上方的气流波动随苍蝇高度线性增加至 0.037 m s(-1)。不同腿部苍蝇信号的到达时间和强度的差异可能会向蜘蛛提供有关猎物方向的信息。(II) 阶段 II 紧随阶段 I 突然出现,波动幅度大得多(波动幅度:0.114 ± 0.050 m s(-1))。它从苍蝇正好在传感器上方开始,对应于苍蝇下方和后方的尾流中随时间变化的流动。其开始表明蜘蛛现在可以够到猎物,并触发其跳跃。蜘蛛从气流特征中获取有关苍蝇位置的信息,从而使其能够正确地调整跳跃时间。接近苍蝇的水平速度反映在不同腿部气流的到达时间差异(范围从 0.038 到 0.108 s)和阶段 I 期间的指数速度增长率(16-79 s(-1))。(III) 苍蝇飞过蜘蛛后,气流速度再次下降。