Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah, USA.
Magn Reson Med. 2013 Apr;69(4):1122-30. doi: 10.1002/mrm.24322. Epub 2012 May 10.
Denaturation of macromolecules within the tissues is believed to be the major factor contributing to the damage of tissues upon hyperthermia. As a result, the value of the spin-lattice relaxation time T1 of the tissue water, which is related to the translational and rotational rates of water, represents an intrinsic probe for investigating structural changes in tissues at high temperature. Therefore, the goal of this work is to investigate whether the simultaneous measurement of temperature and T1 using a hybrid proton resonance frequency (PRF)-T1 measurement technique can be used to detect irreversible changes in T1 that might be indicative of tissue damage. A new hybrid PRF-T1 sequence was implemented based on the variable flip angle driven-equilibrium single-pulse observation (DESPOT)1 method from a standard three dimensional segmented echo-planar imaging sequence by alternating two flip angles from measurement to measurement. The structural changes of the heated tissue volumes were analyzed based on the derived T1 values and the corresponding PRF temperatures. Using the hybrid PRF-T1 technique, we demonstrate that the change of spin lattice relaxation time T1 is reversible with temperature for low thermal dose (thermal dose ≤ 240 cumulative equivalent minutes [CEM] 43°C) and irreversible with temperature after significant accumulation of thermal dose in ex vivo chicken breast tissue. These results suggest that the hybrid PRF-T1 method may be a potentially powerful tool to investigate the extent and mechanism of heat damage of biological tissues.
组织内大分子的变性被认为是高热导致组织损伤的主要因素。因此,组织水的自旋晶格弛豫时间 T1 值与水的平动和转动速度有关,它代表了一种内在的探针,可以用于研究高温下组织的结构变化。因此,本工作的目的是研究使用质子共振频率 (PRF)-T1 混合测量技术同时测量温度和 T1 是否可用于检测 T1 的不可逆变化,这种变化可能表明组织损伤。在标准三维分段回波平面成像序列的基础上,基于可变翻转角驱动平衡单脉冲观察 (DESPOT)1 方法,实现了一种新的混合 PRF-T1 序列,通过在每次测量中交替使用两种翻转角来实现。基于所得 T1 值和相应的 PRF 温度,分析了加热组织体积的结构变化。使用混合 PRF-T1 技术,我们证明了在低热剂量(热剂量≤240 累积等效分钟 [CEM] 43°C)下,T1 自旋晶格弛豫时间的变化随温度可逆,而在体外鸡胸组织中大量累积热剂量后,T1 随温度的变化不可逆。这些结果表明,混合 PRF-T1 方法可能是研究生物组织热损伤程度和机制的一种潜在强大工具。