Yeh Cheng-Yu, Yeh Hsiang-Yuan, Arias Carlos Roberto, Soo Von-Wun
Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan.
ScientificWorldJournal. 2012;2012:315797. doi: 10.1100/2012/315797. Epub 2012 Apr 1.
With the large availability of protein interaction networks and microarray data supported, to identify the linear paths that have biological significance in search of a potential pathway is a challenge issue. We proposed a color-coding method based on the characteristics of biological network topology and applied heuristic search to speed up color-coding method. In the experiments, we tested our methods by applying to two datasets: yeast and human prostate cancer networks and gene expression data set. The comparisons of our method with other existing methods on known yeast MAPK pathways in terms of precision and recall show that we can find maximum number of the proteins and perform comparably well. On the other hand, our method is more efficient than previous ones and detects the paths of length 10 within 40 seconds using CPU Intel 1.73 GHz and 1 GB main memory running under windows operating system.
在有大量蛋白质相互作用网络和微阵列数据支持的情况下,识别在寻找潜在通路中具有生物学意义的线性路径是一个具有挑战性的问题。我们基于生物网络拓扑结构的特征提出了一种颜色编码方法,并应用启发式搜索来加速颜色编码方法。在实验中,我们通过应用于两个数据集来测试我们的方法:酵母和人类前列腺癌网络以及基因表达数据集。我们的方法与其他现有方法在已知酵母MAPK通路的精度和召回率方面的比较表明我们能够找到最多数量的蛋白质并且表现相当出色。另一方面,我们的方法比以前的方法更高效,在运行于Windows操作系统下的英特尔1.73 GHz CPU和1 GB主内存中,能在40秒内检测到长度为10的路径。