Suppr超能文献

整合大规模功能基因组数据以剖析酵母调控网络的复杂性。

Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.

作者信息

Zhu Jun, Zhang Bin, Smith Erin N, Drees Becky, Brem Rachel B, Kruglyak Leonid, Bumgarner Roger E, Schadt Eric E

机构信息

Rosetta Inpharmatics, LLC, Seattle, Washington 98109, USA.

出版信息

Nat Genet. 2008 Jul;40(7):854-61. doi: 10.1038/ng.167. Epub 2008 Jun 15.

Abstract

A key goal of biology is to construct networks that predict complex system behavior. We combine multiple types of molecular data, including genotypic, expression, transcription factor binding site (TFBS), and protein-protein interaction (PPI) data previously generated from a number of yeast experiments, in order to reconstruct causal gene networks. Networks based on different types of data are compared using metrics devised to assess the predictive power of a network. We show that a network reconstructed by integrating genotypic, TFBS and PPI data is the most predictive. This network is used to predict causal regulators responsible for hot spots of gene expression activity in a segregating yeast population. We also show that the network can elucidate the mechanisms by which causal regulators give rise to larger-scale changes in gene expression activity. We then prospectively validate predictions, providing direct experimental evidence that predictive networks can be constructed by integrating multiple, appropriate data types.

摘要

生物学的一个关键目标是构建能够预测复杂系统行为的网络。我们整合了多种类型的分子数据,包括先前从多个酵母实验中生成的基因型、表达、转录因子结合位点(TFBS)和蛋白质-蛋白质相互作用(PPI)数据,以重建因果基因网络。使用为评估网络预测能力而设计的指标对基于不同类型数据的网络进行比较。我们表明,通过整合基因型、TFBS和PPI数据重建的网络具有最强的预测能力。该网络用于预测导致分离酵母群体中基因表达活性热点的因果调节因子。我们还表明,该网络可以阐明因果调节因子引发基因表达活性大规模变化的机制。然后,我们对预测进行前瞻性验证,提供直接的实验证据,证明通过整合多种适当的数据类型可以构建预测性网络。

相似文献

1
Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
Nat Genet. 2008 Jul;40(7):854-61. doi: 10.1038/ng.167. Epub 2008 Jun 15.
2
Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
Mol Omics. 2021 Apr 1;17(2):241-251. doi: 10.1039/d0mo00140f. Epub 2021 Jan 13.
5
Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae.
Genome Biol Evol. 2010;2:697-707. doi: 10.1093/gbe/evq054. Epub 2010 Sep 9.
10
Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
Nucleic Acids Res. 2009 Oct;37(18):5943-58. doi: 10.1093/nar/gkp625. Epub 2009 Aug 6.

引用本文的文献

1
The yeast Mkt1/Pbp1 complex promotes adaptive responses to respiratory growth.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202411169. Epub 2025 Aug 13.
3
Efficient structure learning of gene regulatory networks with Bayesian active learning.
BMC Bioinformatics. 2025 Jun 3;26(1):150. doi: 10.1186/s12859-025-06149-6.
4
A multi-omic approach implicates novel protein dysregulation in post-traumatic stress disorder.
Genome Med. 2025 Apr 29;17(1):43. doi: 10.1186/s13073-025-01473-1.
5
8
Genotype-by-environment interactions shape ubiquitin-proteasome system activity.
bioRxiv. 2024 Nov 21:2024.11.21.624644. doi: 10.1101/2024.11.21.624644.
9
Integrative Multiomics in the Lung Reveals a Protective Role of Asporin in Pulmonary Arterial Hypertension.
Circulation. 2024 Oct 15;150(16):1268-1287. doi: 10.1161/CIRCULATIONAHA.124.069864. Epub 2024 Aug 21.
10
Single cell transcriptomes and multiscale networks from persons with and without Alzheimer's disease.
Nat Commun. 2024 Jul 10;15(1):5815. doi: 10.1038/s41467-024-49790-0.

本文引用的文献

1
Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations.
PLoS Comput Biol. 2007 Apr 13;3(4):e69. doi: 10.1371/journal.pcbi.0030069. Epub 2007 Feb 27.
2
Transcriptional regulation of protein complexes within and across species.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1283-8. doi: 10.1073/pnas.0606914104. Epub 2007 Jan 16.
3
Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14062-7. doi: 10.1073/pnas.0601852103. Epub 2006 Sep 12.
4
Integrating genetic and network analysis to characterize genes related to mouse weight.
PLoS Genet. 2006 Aug 18;2(8):e130. doi: 10.1371/journal.pgen.0020130. Epub 2006 Jul 5.
5
Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
BMC Genomics. 2006 May 24;7:125. doi: 10.1186/1471-2164-7-125.
6
A systems approach to mapping DNA damage response pathways.
Science. 2006 May 19;312(5776):1054-9. doi: 10.1126/science.1122088.
7
A general framework for weighted gene co-expression network analysis.
Stat Appl Genet Mol Biol. 2005;4:Article17. doi: 10.2202/1544-6115.1128. Epub 2005 Aug 12.
9
An improved map of conserved regulatory sites for Saccharomyces cerevisiae.
BMC Bioinformatics. 2006 Mar 7;7:113. doi: 10.1186/1471-2105-7-113.
10
Complex genetic interactions in a quantitative trait locus.
PLoS Genet. 2006 Feb;2(2):e13. doi: 10.1371/journal.pgen.0020013. Epub 2006 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验