Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
Mol Psychiatry. 2012 Sep;17(9):887-905. doi: 10.1038/mp.2012.37. Epub 2012 May 15.
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
我们采用转化性会聚功能基因组学(CFG)方法,通过对人类和动物模型的全基因组关联研究数据与其他遗传和基因表达研究进行基因水平的整合,来鉴定和优先考虑与精神分裂症相关的基因。通过这种多证据评分和途径分析,我们确定了顶级基因(DISC1、TCF4、MBP、MOBP、NCAM1、NRCAM、NDUFV2、RAB18 以及 ADCYAP1、BDNF、CNR1、COMT、DRD2、DTNBP1、GAD1、GRIA1、GRIN2B、HTR2A、NRG1、RELN、SNAP-25、TNIK)、大脑发育、髓鞘形成、细胞黏附、谷氨酸受体信号、G 蛋白偶联受体信号和 cAMP 介导的信号作为病理生理学的关键和治疗干预的靶点。总体而言,这些数据与精神分裂症中连接中断的模型一致,这是由于神经发育环境应激对遗传易感性背景的影响所致。此外,我们还展示了如何使用 CFG 鉴定的顶级候选基因来生成遗传风险预测评分(GRPS),以帮助精神分裂症的诊断,并且在独立队列中具有预测能力。GRPS 还区分了经典发病年龄的精神分裂症与早发和晚发疾病。我们还在三个独立的队列中展示了越来越多的发现,从单核苷酸多态性到基因,再到 CFG 优先的基因,最终在生物学途径和机制层面上的发现具有重叠性、可重复性和一致性。最后,我们将我们从这项分析中确定的精神分裂症的顶级候选基因与我们之前进行的 CFG 分析中确定的双相情感障碍和焦虑症的顶级候选基因以及自闭症和阿尔茨海默病领域的发现进行了比较。总体而言,我们的工作绘制了精神分裂症的基因组和生物学图谱,为更好地理解疾病、诊断和治疗提供了线索。它还揭示了与其他主要精神疾病领域的显著遗传重叠,表明需要改善分类学。