Suppr超能文献

特发性肺纤维化的多维指数和分期系统。

A multidimensional index and staging system for idiopathic pulmonary fibrosis.

机构信息

Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, Box 0111, San Francisco, CA 94143, USA.

出版信息

Ann Intern Med. 2012 May 15;156(10):684-91. doi: 10.7326/0003-4819-156-10-201205150-00004.

Abstract

BACKGROUND

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an overall poor prognosis. A simple-to-use staging system for IPF may improve prognostication, help guide management, and facilitate research.

OBJECTIVE

To develop a multidimensional prognostic staging system for IPF by using commonly measured clinical and physiologic variables.

DESIGN

A clinical prediction model was developed and validated by using retrospective data from 3 large, geographically distinct cohorts.

SETTING

Interstitial lung disease referral centers in California, Minnesota, and Italy.

PATIENTS

228 patients with IPF at the University of California, San Francisco (derivation cohort), and 330 patients at the Mayo Clinic and Morgagni-Pierantoni Hospital (validation cohort).

MEASUREMENTS

The primary outcome was mortality, treating transplantation as a competing risk. Model discrimination was assessed by the c-index, and calibration was assessed by comparing predicted and observed cumulative mortality at 1, 2, and 3 years.

RESULTS

Four variables were included in the final model: gender (G), age (A), and 2 lung physiology variables (P) (FVC and Dlco). A model using continuous predictors (GAP calculator) and a simple point-scoring system (GAP index) performed similarly in derivation (c-index of 70.8 and 69.3, respectively) and validation (c-index of 69.1 and 68.7, respectively). Three stages (stages I, II, and III) were identified based on the GAP index with 1-year mortality of 6%, 16%, and 39%, respectively. The GAP models performed similarly in pooled follow-up visits (c-index ≥71.9).

LIMITATION

Patients were drawn from academic centers and analyzed retrospectively.

CONCLUSION

The GAP models use commonly measured clinical and physiologic variables to predict mortality in patients with IPF.

摘要

背景

特发性肺纤维化(IPF)是一种进行性肺纤维化疾病,总体预后较差。一个简单易用的 IPF 分期系统可以改善预后预测,有助于指导管理,并促进研究。

目的

使用常用的临床和生理变量开发用于 IPF 的多维预后分期系统。

设计

通过使用来自加利福尼亚、明尼苏达和意大利的三个大型地理上不同的队列的回顾性数据开发和验证临床预测模型。

地点

加利福尼亚州、明尼苏达州和意大利的间质性肺病转诊中心。

患者

来自加利福尼亚大学旧金山分校的 228 名 IPF 患者(推导队列)和来自梅奥诊所和 Morgagni-Pierantoni 医院的 330 名患者(验证队列)。

测量

主要结局是死亡率,将移植视为竞争风险。通过 c 指数评估模型区分度,并通过比较 1、2 和 3 年内预测和观察到的累积死亡率来评估校准。

结果

最终模型纳入了 4 个变量:性别(G)、年龄(A)和 2 个肺生理变量(P)(FVC 和 Dlco)。使用连续预测因子(GAP 计算器)和简单的评分系统(GAP 指数)的模型在推导(c 指数分别为 70.8 和 69.3)和验证(c 指数分别为 69.1 和 68.7)中表现相似。根据 GAP 指数确定了三个阶段(I、II 和 III 期),1 年死亡率分别为 6%、16%和 39%。GAP 模型在汇总随访中表现相似(c 指数≥71.9)。

局限性

患者来自学术中心,且分析为回顾性。

结论

GAP 模型使用常用的临床和生理变量来预测 IPF 患者的死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验