Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
Biochem Pharmacol. 2012 Aug 1;84(3):278-91. doi: 10.1016/j.bcp.2012.05.004. Epub 2012 May 12.
Here, for the first time, we have characterized binding properties of the polymyxin class of antibiotics for human α-1-acid glycoprotein (AGP) using a combination of biophysical techniques. The binding affinity of colistin, polymyxin B, polymyxin B(3), colistin methansulfonate, and colistin nona-peptide was determined by isothermal titration calorimetry (ITC), surface plasma resonance (SPR) and fluorometric assay methods. All assay techniques indicated colistin, polymyxin B and polymyxin B(3) display a moderate binding affinity for AGP. ITC and SPR showed there was no detectable binding affinity for colistin methansulfonate and colistin nona-peptide, suggesting both the positive charges of the diaminobutyric acid (Dab) side chains and the N-terminal fatty acyl chain of the polymyxin molecule are required to drive binding to AGP. In addition, the ITC and fluorometric data suggested that endogenous lipidic substances bound to AGP provide part of the polymyxin binding surface. A molecular model of the polymyxin B(3)-AGP F1S complex was presented that illustrates the pivotal role of the N-terminal fatty acyl chain and the D-Phe6-L-Leu7 hydrophobic motif of polymyxin B(3) for binding to the cleft-like ligand binding cavity of AGP F1S variant. The model conforms with the entropy driven binding interaction characterized by ITC which suggests hydrophobic interactions coupled to desolvation events and conformational changes are the primary driving force for polymyxins binding to AGP. Collectively, the data are consistent with a role of this acute-phase reactant protein in the transport of polymyxins in plasma.
在这里,我们首次使用多种生物物理技术,对多粘菌素类抗生素与人α-1-酸性糖蛋白(AGP)的结合特性进行了表征。通过等温滴定量热法(ITC)、表面等离子体共振(SPR)和荧光测定法,确定了黏菌素、多粘菌素 B、多粘菌素 B(3)、黏菌素甲磺酸盐和黏菌素九肽的结合亲和力。所有检测技术均表明,黏菌素、多粘菌素 B 和多粘菌素 B(3)对 AGP 具有中等亲和力。ITC 和 SPR 表明,黏菌素甲磺酸盐和黏菌素九肽没有检测到结合亲和力,这表明多粘菌素分子的二氨基丁酸(Dab)侧链的正电荷和 N-末端脂肪酸链都需要与 AGP 结合。此外,ITC 和荧光数据表明,与 AGP 结合的内源性脂质物质提供了多粘菌素结合表面的一部分。提出了多粘菌素 B(3)-AGP F1S 复合物的分子模型,该模型说明了 N-末端脂肪酸链和多粘菌素 B(3)的 D-Phe6-L-Leu7 疏水性基序在与 AGP F1S 变体的裂隙样配体结合腔结合中的关键作用。该模型符合 ITC 所描述的熵驱动结合相互作用,这表明疏水性相互作用与去溶剂化事件和构象变化相结合是多粘菌素与 AGP 结合的主要驱动力。总的来说,这些数据与这种急性期反应物蛋白在多粘菌素在血浆中的转运中的作用一致。