Suppr超能文献

水相中介孔氧化硅负载磷钨酸催化合成柠檬酸三乙酯

Highly efficient redox isomerisation of allylic alcohols catalysed by pyrazole-based ruthenium(IV) complexes in water: mechanisms of bifunctional catalysis in water.

机构信息

Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

出版信息

Chemistry. 2012 Jun 18;18(25):7749-65. doi: 10.1002/chem.201103374. Epub 2012 May 15.

Abstract

The catalytic activity of ruthenium(IV) ([Ru(η(3):η(3)-C(10)H(16))Cl(2)L]; C(10)H(16) = 2,7-dimethylocta-2,6-diene-1,8-diyl, L = pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole, 3-methyl-5-phenylpyrazole, 2-(1H-pyrazol-3-yl)phenol or indazole) and ruthenium(II) complexes ([Ru(η(6)-arene)Cl(2)(3,5-dimethylpyrazole)]; arene = C(6)H(6), p-cymene or C(6)Me(6)) in the redox isomerisation of allylic alcohols into carbonyl compounds in water is reported. The former show much higher catalytic activity than ruthenium(II) complexes. In particular, a variety of allylic alcohols have been quantitatively isomerised by using [Ru(η(3):η(3)-C(10)H(16))Cl(2)(pyrazole)] as a catalyst; the reactions proceeded faster in water than in THF, and in the absence of base. The isomerisations of monosubstituted alcohols take place rapidly (10-60 min, turn-over frequency = 750-3000 h(-1)) and, in some cases, at 35 °C in 60 min. The nature of the aqueous species formed in water by this complex has been analysed by ESI-MS. To analyse how an aqueous medium can influence the mechanism of the bifunctional catalytic process, DFT calculations (B3LYP) including one or two explicit water molecules and using the polarisable continuum model have been carried out and provide a valuable insight into the role of water on the activity of the bifunctional catalyst. Several mechanisms have been considered and imply the formation of aqua complexes and their deprotonated species generated from [Ru(η(3):η(3)-C(10)H(16))Cl(2)(pyrazole)]. Different competitive pathways based on outer-sphere mechanisms, which imply hydrogen-transfer processes, have been analysed. The overall isomerisation implies two hydrogen-transfer steps from the substrate to the catalyst and subsequent transfer back to the substrate. In addition to the conventional Noyori outer-sphere mechanism, which involves the pyrazolide ligand, a new mechanism with a hydroxopyrazole complex as the active species can be at work in water. The possibility of formation of an enol, which isomerises easily to the keto form in water, also contributes to the efficiency in water.

摘要

报道了钌(IV)([Ru(η(3):η(3)-C(10)H(16))Cl(2)L];C(10)H(16)=2,7-二甲基辛-2,6-二烯-1,8-二基,L=吡唑、3-甲基吡唑、3,5-二甲基吡唑、3-甲基-5-苯基吡唑、2-(1H-吡唑-3-基)苯酚或吲唑)和钌(II)配合物([Ru(η(6)-芳烃)Cl(2)(3,5-二甲基吡唑)];芳烃=C(6)H(6)、对甲基异丙苯或 C(6)Me(6))在水相中将烯丙醇氧化异构化为羰基化合物的反应中的催化活性。前者比钌(II)配合物显示出更高的催化活性。特别地,使用[Ru(η(3):η(3)-C(10)H(16))Cl(2)(吡唑)]作为催化剂,各种烯丙醇被定量异构化;反应在水中比在 THF 中进行得更快,且在没有碱的情况下进行。单取代醇的异构化反应迅速(10-60 分钟,周转率=750-3000 h(-1)),在某些情况下,在 35°C 下 60 分钟内即可完成。通过 ESI-MS 分析了该配合物在水中形成的水相物种的性质。为了分析水相如何影响双功能催化过程的机理,进行了包括一个或两个显式水分子并用极化连续模型的 DFT 计算(B3LYP),为双功能催化剂的活性中水的作用提供了有价值的见解。考虑了几种机制,并暗示了水合配合物及其从[Ru(η(3):η(3)-C(10)H(16))Cl(2)(吡唑)]生成的去质子化物种的形成。基于涉及氢转移过程的外层机制的不同竞争途径已被分析。整个异构化过程意味着底物向催化剂转移两个氢转移步骤,然后再转移回底物。除了涉及吡唑配体的常规 Noyori 外层机制外,在水中可能还存在一种以羟吡唑配合物为活性物种的新机制。在水中容易异构化为酮式的烯醇的形成可能性也有助于提高效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验