Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
Dalton Trans. 2013 Jan 28;42(4):927-34. doi: 10.1039/c2dt31919e.
The formation of an active 16-electron ruthenium sec-alkoxide complex via loss of the CO ligand is an important step in the mechanism of the racemization of sec-alcohols by (η(5)-Ph(5)C(5))Ru(CO)(2)X ruthenium complexes with X = Cl and O(t)Bu. Here we show with accurate DFT calculations the potential energy profile of the CO dissociation pathway for a series of relevant (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes, where X = Cl, O(t)Bu, H and COO(t)Bu. We have found that the CO dissociation energy increases in the following order: O(t)Bu (lowest), Cl, COO(t)Bu and H (highest). Using the distance between ruthenium and C(CO), r = Ru-C(CO), as a constraint, and by optimizing all other degrees of freedom for a range of Ru-CO distances, we obtained relative energies, ΔE(r) and geometries of a sufficient number of transient structures with the elongated Ru-CO bond up to r = 3.4 Å. Our calculations provide a quantitative understanding of the CO ligand dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)Cl and (η(5)-Ph(5)C(5))Ru(CO)(2)(O(t)Bu) complexes, which is relevant to the mechanism of their catalytic activity in the racemization of alcohols. We recently reported that exchange of the CO ligand by isotopically labeled (13)CO in the Ru-O(t)Bu complex occurs twenty times faster than that in the Ru-Cl complex. This corresponds to a difference of 1.8 kcal mol(-1) in the CO dissociation energy (at room temperature). This is in very good agreement with the calculated difference between the two potential energy curves for Ru-O(t)Bu and Ru-Cl complexes, which is about 1.8-2 kcal mol(-1) around the corresponding transition states of the CO dissociation. The calculated difference in the total energy for CO dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes is related to the stabilization provided by the X group in the final 16-electron complexes, which are formed via product-like transition states. In addition to the calculated transition states of CO dissociation in Ru-O(t)Bu and Ru-Cl complexes, the calculated transient structures with the elongated Ru-CO bond provide insight into how the geometry of the ruthenium complex with a potent heteroatom donor group (X) gradually changes when one of the COs is dissociating.
通过失去 CO 配体形成活跃的 16 电子钌 sec-烷氧基配合物,是(η(5)-Ph(5)C(5))Ru(CO)(2)X 钌配合物(X = Cl 和 O(t)Bu)racemization sec-醇的反应机理中的重要步骤。在这里,我们通过精确的 DFT 计算显示了一系列相关(η(5)-Ph(5)C(5))Ru(CO)(2)X 配合物的 CO 解离途径的势能曲线,其中 X = Cl、O(t)Bu、H 和 COO(t)Bu。我们发现 CO 解离能按以下顺序增加:O(t)Bu(最低)、Cl、COO(t)Bu 和 H(最高)。通过将钌与 C(CO)之间的距离 r = Ru-C(CO)用作约束,并通过优化一系列 Ru-CO 距离的所有其他自由度,我们获得了具有拉长 Ru-CO 键的瞬态结构的相对能量ΔE(r)和几何形状,直至 r = 3.4 Å。我们的计算为(η(5)-Ph(5)C(5))Ru(CO)(2)Cl 和(η(5)-Ph(5)C(5))Ru(CO)(2)(O(t)Bu)配合物中的 CO 配体解离提供了定量理解,这与它们在醇的 racemization 中催化活性的机理有关。我们最近报道,在 Ru-O(t)Bu 配合物中,通过同位素标记的(13)CO 交换 CO 配体的速度比在 Ru-Cl 配合物中快二十倍。这对应于 CO 解离能的 1.8 kcal mol(-1)的差异(在室温下)。这与 Ru-O(t)Bu 和 Ru-Cl 配合物的两个势能曲线之间的计算差异非常吻合,大约在 CO 解离的相应过渡态周围为 1.8-2 kcal mol(-1)。(η(5)-Ph(5)C(5))Ru(CO)(2)X 配合物中 CO 解离的总能量计算差异与最终 16 电子配合物中 X 基团提供的稳定性有关,这些配合物是通过产物样过渡态形成的。除了 Ru-O(t)Bu 和 Ru-Cl 配合物中 CO 解离的计算过渡态之外,具有拉长 Ru-CO 键的计算瞬态结构还提供了有关当其中一个 CO 解离时具有潜在杂原子供体基团(X)的钌配合物的几何形状如何逐渐变化的见解。