Suppr超能文献

语义文本挖掘支持木质纤维素研究。

Semantic text mining support for lignocellulose research.

机构信息

Department of Computer Science and Software Engineering, Concordia University, Montréal, QC, Canada.

出版信息

BMC Med Inform Decis Mak. 2012 Apr 30;12 Suppl 1(Suppl 1):S5. doi: 10.1186/1472-6947-12-S1-S5.

Abstract

BACKGROUND

Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties.

RESULTS

Semantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources.

CONCLUSIONS

Working closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information.

摘要

背景

生物燃料是从生物质中生产的,被认为是化石燃料的有前途的可持续替代品。为了将木质纤维素转化为可发酵糖用于生物燃料生产,需要使用能够高效、经济地水解木质纤维素生物质的酶混合物。由于许多真菌自然分解木质纤维素,因此鉴定和表征相关酶是开发生物质衍生产品和燃料的研究和开发中的关键挑战。应对这一挑战的一种方法是从快速扩展的微生物基因组中挖掘具有适当催化特性的酶。

结果

语义技术,包括自然语言处理、本体、语义 Web 服务和基于 Web 的协作工具,有望支持用户处理复杂数据,从而促进知识密集型任务。一个持续的挑战是选择适当的技术并将它们组合在一个连贯的系统中,为用户带来可衡量的改进。我们介绍了我们正在开发的支持基于基因组学的木质纤维素研究的语义基础设施。这项工作的一部分是自动从文献和基因组资源中可用的关于真菌酶的信息中提取知识。

结论

我们与手动整理现有文献的真菌生物学研究人员密切合作,开发了本体自然语言处理管道,并将其集成到基于 Web 的界面中,以协助他们完成两项主要任务:从文献中挖掘相关知识,同时提供丰富且语义链接的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/3339392/a79b7b0c7b1f/1472-6947-12-S1-S5-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验