Fukuzumi Shunichi, Ohkubo Kei, Morimoto Yuma
Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.
Phys Chem Chem Phys. 2012 Jun 28;14(24):8472-84. doi: 10.1039/c2cp40459a. Epub 2012 May 17.
Redox inactive metal ions acting as Lewis acids can control electron transfer from electron donors (D) to electron acceptors (A) by binding to radical anions of electron acceptors which act as Lewis bases. Such electron transfer is defined as metal ion-coupled electron transfer (MCET). Mechanisms of metal ion-coupled electron transfer are classified mainly into two pathways, i.e., metal ion binding to electron acceptors followed by electron transfer (MB/ET) and electron transfer followed by metal ion binding to the resulting radical anions of electron acceptors (ET/MB). In the former case, electron transfer and the stronger binding of metal ions to the radical anions occur in a concerted manner. Examples are shown in each case to clarify the factors to control MCET reactions in both thermal and photoinduced electron-transfer reactions including back electron-transfer reactions.
作为路易斯酸的氧化还原惰性金属离子可通过与作为路易斯碱的电子受体的自由基阴离子结合,来控制从电子供体(D)到电子受体(A)的电子转移。这种电子转移被定义为金属离子偶联电子转移(MCET)。金属离子偶联电子转移的机制主要分为两条途径,即金属离子先与电子受体结合,随后进行电子转移(MB/ET),以及先进行电子转移,随后金属离子与电子受体生成的自由基阴离子结合(ET/MB)。在前一种情况下,电子转移以及金属离子与自由基阴离子的更强结合以协同方式发生。每种情况都给出了示例,以阐明在热诱导和光诱导电子转移反应(包括逆电子转移反应)中控制MCET反应的因素。