Department of Biomedical Engineering, Institue for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Curr Opin Chem Biol. 2012 Aug;16(3-4):307-17. doi: 10.1016/j.cbpa.2012.04.012. Epub 2012 May 19.
Advances in synthetic biology have augmented the available toolkit of biomolecular modules, allowing engineering and manipulation of signaling in a variety of organisms, ranging in complexity from single bacteria and eukaryotic cells to multi-cellular systems. The richness of synthetic circuit outputs can be dramatically enhanced by sophisticated environmental control systems designed to precisely pattern spatial-temporally heterogeneous environmental stimuli controlling these circuits. Moreover, the performance of the synthetic modules and 'blocks' needed to assemble more complicated networks requires more complete characterization as a function of arbitrarily complex environmental inputs. Microfluidic technologies are poised to meet these needs through a variety of innovative designs capitalizing on the unique benefits of manipulating fluids on the micro-scales and nano-scales. This review discusses the utility of microfluidics for the study of synthetic circuits and highlights recent work in the area.
合成生物学的进展增加了生物分子模块的可用工具包,允许在从简单的细菌和真核细胞到多细胞系统等各种生物体中对信号进行工程设计和操作。通过设计复杂的环境控制系统,可以显著增强合成回路的输出丰富度,该系统旨在精确设计控制这些回路的时空异质环境刺激的模式。此外,组装更复杂网络所需的合成模块和“模块”的性能需要更完整的特征描述,作为任意复杂环境输入的函数。微流控技术通过利用在微尺度和纳米尺度上操纵流体的独特优势的各种创新设计,有望满足这些需求。本综述讨论了微流控技术在合成回路研究中的应用,并重点介绍了该领域的最新工作。