Huang Haiyao, Densmore Douglas
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
Lab Chip. 2014 Sep 21;14(18):3459-74. doi: 10.1039/c4lc00509k. Epub 2014 Jul 11.
One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications. Major challenges in these efforts include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of specification-design-assembly-verification. We present here a summary of the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. The integration of microfluidics and synthetic biology has the capability to produce rapid prototyping platforms for characterization of genetic devices, testing of biotherapeutics, and development of biosensors.
合成生物学的一个目标是在活细胞中设计和构建基因回路,以用于一系列应用。这些努力中的主要挑战包括提高工程生物系统的可扩展性和稳健性,以及简化和自动化合成生物学的规范-设计-组装-验证工作流程。我们在此总结微流控技术的进展,特别是微流控大规模集成技术,这些技术可用于应对合成生物学工作流程每个步骤所面临的挑战。微流控技术允许在微尺度设备内精确控制生物物质的流动,因此可能为合成生物系统提供更可靠且可扩展的构建方式。微流控技术与合成生物学的整合有能力产生用于基因装置表征、生物治疗测试和生物传感器开发的快速原型平台。