Suppr超能文献

地塞米松在炎症级联反应的几个部位阻断肺泡缺氧的全身炎症。

Dexamethasone blocks the systemic inflammation of alveolar hypoxia at several sites in the inflammatory cascade.

机构信息

Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KA 66160, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2012 Jul 15;303(2):H168-77. doi: 10.1152/ajpheart.00106.2012. Epub 2012 May 18.

Abstract

Alveolar hypoxia produces a rapid and widespread systemic inflammation in rats. The inflammation is initiated by the release into the circulation of monocyte chemoattractant protein-1 (MCP-1) from alveolar macrophages (AMO) activated by the low alveolar Po(2). Circulating MCP-1 induces mast cell (MC) degranulation with renin release and activation of the local renin-angiotensin system, leading to microvascular leukocyte recruitment and increased vascular permeability. We investigated the effect of dexamethasone, a synthetic anti-inflammatory glucocorticoid, on the development of the systemic inflammation of alveolar hypoxia and its site(s) of action in the inflammatory cascade. The inflammatory steps investigated were the activation of primary cultures of AMO by hypoxia, the degranulation of MCs by MCP-1 in the mesentery microcirculation of rats, and the effect of angiotensin II (ANG II) on the leukocyte/endothelial interface of the mesentery microcirculation. Dexamethasone prevented the mesentery inflammation in conscious rats breathing 10% O(2) for 4 h by acting in all key steps of the inflammatory cascade. Dexamethasone: 1) blocked the hypoxia-induced AMO activation and the release of MCP-1 and abolished the increase in plasma MCP-1 of conscious, hypoxic rats; 2) prevented the MCP-1-induced degranulation of mesentery perivascular MCs and reduced the number of peritoneal MCs, and 3) blocked the leukocyte-endothelial adherence and the extravasation of albumin induced by topical ANG II in the mesentery. The effect at each site was sufficient to prevent the AMO-initiated inflammation of hypoxia. These results may explain the effectiveness of dexamethasone in the treatment of the systemic effects of alveolar hypoxia.

摘要

肺泡缺氧会在大鼠体内迅速引发广泛的全身性炎症。这种炎症是由肺泡巨噬细胞(AMO)被低肺泡 Po(2)激活后释放到循环中的单核细胞趋化蛋白-1(MCP-1)引发的。循环中的 MCP-1 诱导肥大细胞(MC)脱颗粒,释放肾素并激活局部肾素-血管紧张素系统,导致微血管白细胞募集和血管通透性增加。我们研究了地塞米松(一种合成的抗炎糖皮质激素)对肺泡缺氧引起的全身性炎症的影响及其在炎症级联反应中的作用部位。研究的炎症步骤包括:缺氧对 AMO 原代培养物的激活、MCP-1 在大鼠肠系膜微循环中对 MC 的脱颗粒作用,以及血管紧张素 II(ANG II)对肠系膜微循环白细胞/内皮界面的影响。地塞米松通过作用于炎症级联反应的所有关键步骤,预防了在 10% O(2) 中呼吸 4 小时的清醒大鼠的肠系膜炎症。地塞米松:1)阻断了缺氧诱导的 AMO 激活和 MCP-1 的释放,并消除了清醒缺氧大鼠血浆中 MCP-1 的增加;2)阻止了 MCP-1 诱导的肠系膜血管周围 MC 脱颗粒,并减少了腹膜 MC 的数量;3)阻断了局部 ANG II 诱导的肠系膜白细胞-内皮黏附和白蛋白外渗。每个部位的作用足以预防 AMO 引发的缺氧炎症。这些结果可能解释了地塞米松在治疗肺泡缺氧全身效应方面的有效性。

相似文献

1
Dexamethasone blocks the systemic inflammation of alveolar hypoxia at several sites in the inflammatory cascade.
Am J Physiol Heart Circ Physiol. 2012 Jul 15;303(2):H168-77. doi: 10.1152/ajpheart.00106.2012. Epub 2012 May 18.
2
Renin released from mast cells activated by circulating MCP-1 initiates the microvascular phase of the systemic inflammation of alveolar hypoxia.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2264-70. doi: 10.1152/ajpheart.00461.2011. Epub 2011 Sep 30.
3
The systemic inflammation of alveolar hypoxia is initiated by alveolar macrophage-borne mediator(s).
Am J Respir Cell Mol Biol. 2009 Nov;41(5):573-82. doi: 10.1165/rcmb.2008-0417OC. Epub 2009 Feb 24.
4
Monocyte chemoattractant protein-1 released from alveolar macrophages mediates the systemic inflammation of acute alveolar hypoxia.
Am J Respir Cell Mol Biol. 2011 Jul;45(1):53-61. doi: 10.1165/rcmb.2010-0264OC. Epub 2010 Sep 2.
5
Alveolar macrophages are necessary for the systemic inflammation of acute alveolar hypoxia.
J Appl Physiol (1985). 2007 Oct;103(4):1386-94. doi: 10.1152/japplphysiol.00312.2007. Epub 2007 Jul 26.
6
Acclimatization of the systemic microcirculation to alveolar hypoxia is mediated by an iNOS-dependent increase in nitric oxide availability.
J Appl Physiol (1985). 2017 Oct 1;123(4):974-982. doi: 10.1152/japplphysiol.00322.2016. Epub 2017 Mar 16.
7
Mast cells mediate the microvascular inflammatory response to systemic hypoxia.
J Appl Physiol (1985). 2003 Jan;94(1):325-34. doi: 10.1152/japplphysiol.00637.2002. Epub 2002 Sep 20.
8
Role of the renin-angiotensin system in the systemic microvascular inflammation of alveolar hypoxia.
Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2285-94. doi: 10.1152/ajpheart.00981.2006. Epub 2007 Jan 5.
9
Alveolar hypoxia-induced systemic inflammation: what low PO(2) does and does not do.
Adv Exp Med Biol. 2010;662:27-32. doi: 10.1007/978-1-4419-1241-1_3.
10
Alveolar hypoxia, alveolar macrophages, and systemic inflammation.
Respir Res. 2009 Jun 22;10(1):54. doi: 10.1186/1465-9921-10-54.

引用本文的文献

1
The combined use of acetazolamide and in the prevention and treatment of altitude sickness.
Ann Transl Med. 2022 May;10(10):541. doi: 10.21037/atm-22-2111.
2
Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities.
Adv Sci (Weinh). 2021 Aug;8(16):e2004393. doi: 10.1002/advs.202004393. Epub 2021 Jun 24.
3
Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease.
Front Immunol. 2021 Jun 4;12:684085. doi: 10.3389/fimmu.2021.684085. eCollection 2021.
4
Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target.
Front Cardiovasc Med. 2021 Apr 12;8:649512. doi: 10.3389/fcvm.2021.649512. eCollection 2021.
6
Dexamethasone-Enhanced Microdialysis and Penetration Injury.
Front Bioeng Biotechnol. 2020 Dec 8;8:602266. doi: 10.3389/fbioe.2020.602266. eCollection 2020.
7
Corticosteroids and perinatal hypoxic-ischemic brain injury.
Drug Discov Today. 2018 Oct;23(10):1718-1732. doi: 10.1016/j.drudis.2018.05.019. Epub 2018 May 17.
9
Chemokine localization in bronchial angiogenesis.
PLoS One. 2013 Jun 11;8(6):e66432. doi: 10.1371/journal.pone.0066432. Print 2013.

本文引用的文献

1
Renin released from mast cells activated by circulating MCP-1 initiates the microvascular phase of the systemic inflammation of alveolar hypoxia.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2264-70. doi: 10.1152/ajpheart.00461.2011. Epub 2011 Sep 30.
2
Role of oxidative stress and inflammation in hypoxia-induced cerebral edema: a molecular approach.
High Alt Med Biol. 2010 Fall;11(3):231-44. doi: 10.1089/ham.2009.1057.
3
Monocyte chemoattractant protein-1 released from alveolar macrophages mediates the systemic inflammation of acute alveolar hypoxia.
Am J Respir Cell Mol Biol. 2011 Jul;45(1):53-61. doi: 10.1165/rcmb.2010-0264OC. Epub 2010 Sep 2.
6
Dexamethasone but not tadalafil improves exercise capacity in adults prone to high-altitude pulmonary edema.
Am J Respir Crit Care Med. 2009 Aug 15;180(4):346-52. doi: 10.1164/rccm.200808-1348OC. Epub 2009 Jun 11.
7
The systemic inflammation of alveolar hypoxia is initiated by alveolar macrophage-borne mediator(s).
Am J Respir Cell Mol Biol. 2009 Nov;41(5):573-82. doi: 10.1165/rcmb.2008-0417OC. Epub 2009 Feb 24.
8
Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: molecular mechanisms of action of cobalt chloride.
Toxicol Appl Pharmacol. 2008 Sep 15;231(3):354-63. doi: 10.1016/j.taap.2008.05.008. Epub 2008 May 20.
9
Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation.
J Physiol. 2008 Sep 1;586(17):4055-9. doi: 10.1113/jphysiol.2008.157669. Epub 2008 Jul 3.
10
Role of the renin-angiotensin system in vascular inflammation.
Trends Pharmacol Sci. 2008 Jul;29(7):367-74. doi: 10.1016/j.tips.2008.05.003. Epub 2008 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验