BioTechnology Institute and Department of Microbiology, University of Minnesota, St. Paul, MN 55108, USA.
ChemSusChem. 2012 Jun;5(6):1099-105. doi: 10.1002/cssc.201100748. Epub 2012 May 21.
Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve.
希瓦氏菌属可以在阳极表面形成超过 20μm 厚的生物膜,利用阳极作为末端呼吸电子受体。微生物如何通过厚厚的生物膜和生物膜/阳极界面传输电子,以及是什么决定了生物膜厚度和催化活性(即电流,电子转移到阳极的速率)的上限,这些都是引起广泛关注的基本问题。大量实验证据表明,电子是通过与细胞外膜相关的细胞色素网络、细胞外聚合物物质和菌毛从单个细胞传递的。在这里,我们描述了这种被称为电子超交换的细胞外电子转移过程,以及它在生物膜阳极呼吸中的作用。超交换能够解释许多不同类型的实验结果,以及希瓦氏菌生物膜阳极能够达到的生物膜厚度和催化活性的上限。
ChemSusChem. 2012-5-21
Phys Chem Chem Phys. 2013-5-22
Proc Natl Acad Sci U S A. 2012-9-5
Appl Environ Microbiol. 2006-11
Front Chem. 2025-7-16
Microb Biotechnol. 2024-10
NPJ Biofilms Microbiomes. 2023-4-7
J Phys Chem Lett. 2022-12-22
Microbiol Spectr. 2022-12-21