Suppr超能文献

生物膜和纳米线的产生导致硫还原地杆菌燃料电池中的电流增加。

Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.

作者信息

Reguera Gemma, Nevin Kelly P, Nicoll Julie S, Covalla Sean F, Woodard Trevor L, Lovley Derek R

机构信息

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

Appl Environ Microbiol. 2006 Nov;72(11):7345-8. doi: 10.1128/AEM.01444-06. Epub 2006 Aug 25.

Abstract

Geobacter sulfurreducens developed highly structured, multilayer biofilms on the anode surface of a microbial fuel cell converting acetate to electricity. Cells at a distance from the anode remained viable, and there was no decrease in the efficiency of current production as the thickness of the biofilm increased. Genetic studies demonstrated that efficient electron transfer through the biofilm required the presence of electrically conductive pili. These pili may represent an electronic network permeating the biofilm that can promote long-range electrical transfer in an energy-efficient manner, increasing electricity production more than 10-fold.

摘要

硫还原地杆菌在将乙酸盐转化为电能的微生物燃料电池的阳极表面形成了高度结构化的多层生物膜。距离阳极较远的细胞仍能存活,并且随着生物膜厚度的增加,电流产生效率并未降低。遗传学研究表明,通过生物膜进行有效的电子转移需要存在导电菌毛。这些菌毛可能代表了一个渗透生物膜的电子网络,它能够以节能的方式促进远距离的电转移,使发电量增加10倍以上。

相似文献

1
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.
Appl Environ Microbiol. 2006 Nov;72(11):7345-8. doi: 10.1128/AEM.01444-06. Epub 2006 Aug 25.
5
Microbial nanowires for bioenergy applications.
Curr Opin Biotechnol. 2014 Jun;27:88-95. doi: 10.1016/j.copbio.2013.12.003. Epub 2013 Dec 31.
6
Dissecting the Structural and Conductive Functions of Nanowires in Electroactive Biofilms.
mBio. 2021 Feb 22;13(1):e0382221. doi: 10.1128/mbio.03822-21. Epub 2022 Feb 15.
7
The performance of a microbial fuel cell depends strongly on anode geometry: a multidimensional modeling study.
Bull Math Biol. 2012 Apr;74(4):834-57. doi: 10.1007/s11538-011-9690-0. Epub 2011 Oct 20.
8
[Electricity from microorganisms].
Mikrobiologiia. 2008 Mar-Apr;77(2):149-57.
10
Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.
Appl Environ Microbiol. 2012 Jan;78(2):437-44. doi: 10.1128/AEM.06782-11. Epub 2011 Nov 18.

引用本文的文献

1
Electron transport across the cell envelope via multiheme -type cytochromes in .
Front Chem. 2025 Jul 16;13:1621274. doi: 10.3389/fchem.2025.1621274. eCollection 2025.
2
Prediction and validation of nanowire proteins in G20 using machine learning and feature engineering.
Comput Struct Biotechnol J. 2025 Apr 19;27:1706-1718. doi: 10.1016/j.csbj.2025.04.022. eCollection 2025.
3
Elastic Deformation of Cellulose/Lignin-Based Anode for Rejuvenating Aged Mix-Cultured Electroactive Biofilms.
Adv Sci (Weinh). 2025 Jun;12(23):e2417788. doi: 10.1002/advs.202417788. Epub 2025 May 8.
4
Detecting Excess Biofilm Thickness in Microbial Electrolysis Cells by Real-Time In-Situ Biofilm Monitoring.
Biotechnol Bioeng. 2025 Aug;122(8):2049-2062. doi: 10.1002/bit.29017. Epub 2025 May 2.
5
Extracellular electron transfer proteins contribute to reduction of ferric minerals by biofilms.
Appl Environ Microbiol. 2025 May 21;91(5):e0036925. doi: 10.1128/aem.00369-25. Epub 2025 Apr 9.
6
The Role of Anode Potential in Electromicrobiology.
Microorganisms. 2025 Mar 11;13(3):631. doi: 10.3390/microorganisms13030631.
8
Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0246524. doi: 10.1128/aem.02465-24. Epub 2025 Jan 14.
9
Polyaniline nanofiber: an excellent anode material for microbial fuel cells.
RSC Adv. 2024 Oct 29;14(46):34498-34503. doi: 10.1039/d4ra03774j. eCollection 2024 Oct 23.
10
Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation.
bioRxiv. 2024 Jun 13:2024.06.13.598847. doi: 10.1101/2024.06.13.598847.

本文引用的文献

1
Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens.
Environ Microbiol. 2006 Oct;8(10):1805-15. doi: 10.1111/j.1462-2920.2006.01065.x.
2
Bug juice: harvesting electricity with microorganisms.
Nat Rev Microbiol. 2006 Jul;4(7):497-508. doi: 10.1038/nrmicro1442.
3
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
4
Extracellular electron transfer via microbial nanowires.
Nature. 2005 Jun 23;435(7045):1098-101. doi: 10.1038/nature03661.
5
Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.
Microb Ecol. 2004 Aug;48(2):178-90. doi: 10.1007/s00248-003-0004-4. Epub 2004 Jun 17.
6
Dissimilatory Fe(III) and Mn(IV) reduction.
Adv Microb Physiol. 2004;49:219-86. doi: 10.1016/S0065-2911(04)49005-5.
7
Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor.
Appl Environ Microbiol. 2004 Apr;70(4):2525-8. doi: 10.1128/AEM.70.4.2525-2528.2004.
8
Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.
Science. 2003 Dec 12;302(5652):1967-9. doi: 10.1126/science.1088727.
9
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
Nat Biotechnol. 2003 Oct;21(10):1229-32. doi: 10.1038/nbt867. Epub 2003 Sep 7.
10
Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
Mol Microbiol. 2003 Jun;48(6):1511-24. doi: 10.1046/j.1365-2958.2003.03525.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验