Suppr超能文献

磁铁矿(Fe₃O₄)纳米颗粒对电穿孔诱导的垂体瘤(GH₃)细胞和 RAW 264.7 巨噬细胞内向电流的影响。

The effects of magnetite (Fe₃O₄) nanoparticles on electroporation-induced inward currents in pituitary tumor (GH₃) cells and in RAW 264.7 macrophages.

机构信息

Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan.

出版信息

Int J Nanomedicine. 2012;7:1687-96. doi: 10.2147/IJN.S28798. Epub 2012 Mar 27.

Abstract

AIMS

Fe₃O₄ nanoparticles (NPs) have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.

METHODS

We evaluated whether amine surface-modified Fe₃O₄ NPs have any effect on ion currents in pituitary tumor (GH₃) cells via voltage clamp methods.

RESULTS

The addition of Fe₃O₄ NPs decreases the amplitude of membrane electroporation-induced currents (I(MEP)) with a half-maximal inhibitory concentration at 45 μg/mL. Fe₃O₄ NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of I(MEP), ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.

CONCLUSION

The modulation of magnetic electroporation-induced currents by Fe₃O₄ NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.

摘要

目的

由于超顺磁性,Fe₃O₄ 纳米颗粒(NPs)在磁共振成像中提供了独特的图像对比效果。然而,这些 NPs 对同时引起局部磁场扰动的膜离子电流的可能影响尚不清楚。

方法

我们通过电压钳方法评估了胺表面修饰的 Fe₃O₄ NPs 是否对垂体瘤(GH₃)细胞中的离子流有任何影响。

结果

Fe₃O₄ NPs 的加入会降低膜电穿孔诱导电流(I(MEP))的幅度,其半最大抑制浓度为 45 μg/mL。浓度为 3 mg/mL 的 Fe₃O₄ NPs 使 I(MEP)的幅度产生双相反应,即初始降低后持续增加。在 RAW 264.7 巨噬细胞中也观察到类似的效果。

结论

Fe₃O₄ NPs 对磁电穿孔诱导电流的调制构成了在各种成像模式下或促进药物输送下进行细胞跟踪的重要方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20cd/3357052/a5e825b10766/ijn-7-1687f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验