Kulbacka Julita, Pucek Agata, Wilk Kazimiera Anna, Dubińska-Magiera Magda, Rossowska Joanna, Kulbacki Marek, Kotulska Małgorzata
Department of Medical Biochemistry, Medical University, Chałubińskiego 10 St, 50-368, Wroclaw, Poland.
Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
J Membr Biol. 2016 Oct;249(5):645-661. doi: 10.1007/s00232-016-9906-1. Epub 2016 May 12.
Drug delivery technology is still a dynamically developing field of medicine. The main direction in nanotechnology research (nanocarriers, nanovehicles, etc.) is efficient drug delivery to target cells with simultaneous drug reduction concentration. However, nanotechnology trends in reducing the carrier sizes to several nanometers limit the volume of the loaded substance and may pose a danger of uncontrolled access into the cells. On the other hand, nanoparticles larger than 200 nm in diameter have difficulties to undergo rapid diffusional transport through cell membranes. The main advantage of large nanoparticles is higher drug encapsulation efficiency and the ability to deliver a wider array of drugs. Our present study contributes a new approach with large Tween 80 solid lipid nanoparticles SLN (i.e., hydrodynamic GM-SLN-glycerol monostearate, GM, as the lipid and ATO5-SLNs-glyceryl palmitostearate, ATO5, as the lipid) with diameters DH of 379.4 nm and 547 nm, respectively. They are used as drug carriers alone and in combination with electroporation (EP) induced by millisecond pulsed electric fields. We evaluate if EP can support the transport of large nanocarriers into cells. The study was performed with two cell lines: human colon adenocarcinoma LoVo and hamster ovarian fibroblastoid CHO-K1 with coumarin 6 (C6) as a fluorescent marker for encapsulation. The biological safety of the potential treatment procedure was evaluated with cell viability after their exposure to nanoparticles and EP. The EP efficacy was evaluated by FACS method. The impact on intracellular structure organization of cytoskeleton was visualized by CLSM method with alpha-actin and beta-tubulin. The obtained results indicate low cytotoxicity of both carrier types, free and loaded with C6. The evaluation of cytoskeleton proteins indicated no intracellular structure damage. The intracellular uptake and accumulation show that SLNs do not support transport of C6 coumarin. Only application of electroporation improved the transport of encapsulated and free C6 into both treated cell lines.
药物递送技术仍是医学领域一个动态发展的方向。纳米技术研究(纳米载体、纳米运载工具等)的主要方向是将药物高效递送至靶细胞,同时降低药物浓度。然而,纳米技术将载体尺寸减小至几纳米的趋势限制了负载物质的体积,且可能存在不受控制地进入细胞的风险。另一方面,直径大于200纳米的纳米颗粒难以通过细胞膜进行快速扩散运输。大尺寸纳米颗粒的主要优势在于更高的药物包封效率以及递送更多种类药物的能力。我们目前的研究提出了一种新方法,即使用直径分别为379.4纳米和547纳米的大尺寸吐温80固体脂质纳米粒(SLN)(即,以硬脂酸甘油酯GM作为脂质的流体动力学GM - SLN,以及以棕榈硬脂酸甘油酯ATO5作为脂质的ATO5 - SLN)。它们单独用作药物载体,并与毫秒级脉冲电场诱导的电穿孔(EP)联合使用。我们评估电穿孔是否能支持大尺寸纳米载体进入细胞。该研究使用了两种细胞系:人结肠腺癌LoVo细胞系和仓鼠卵巢成纤维细胞样CHO - K1细胞系,以香豆素6(C6)作为用于包封的荧光标记物。通过纳米颗粒和电穿孔处理后细胞的活力来评估潜在治疗程序的生物安全性。通过流式细胞术(FACS)方法评估电穿孔效果。使用α - 肌动蛋白和β - 微管蛋白通过共聚焦激光扫描显微镜(CLSM)方法观察对细胞骨架细胞内结构组织的影响。所得结果表明,两种类型的载体(游离的和负载C6的)细胞毒性都很低。对细胞骨架蛋白的评估表明细胞内结构没有损伤。细胞内摄取和积累情况表明,固体脂质纳米粒不支持C6香豆素的运输。只有应用电穿孔才能改善包封的和游离的C6进入两种处理细胞系的运输。