文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁纳米粒子诱导的热疗增强细胞活力的降低。

Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles.

机构信息

Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico.

出版信息

Int J Nanomedicine. 2011;6:373-80. doi: 10.2147/IJN.S14613. Epub 2011 Feb 15.


DOI:10.2147/IJN.S14613
PMID:21499427
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3075903/
Abstract

Colloidal suspensions of iron oxide magnetic nanoparticles are known to dissipate energy when exposed to an oscillating magnetic field. Such energy dissipation can be employed to locally raise temperature inside a tumor between 41°C and 45°C (hyperthermia) to promote cell death, a treatment known as magnetic fluid hyperthermia (MFH). This work seeks to quantify differences between MFH and hot-water hyperthermia (HWH) in terms of reduction in cell viability using two cancer cell culture models, Caco-2 (human epithelial colorectal adenocarcinoma) and MCF-7 (human breast cancer). Magnetite nanoparticles were synthesized via the co-precipitation method and functionalized with adsorbed carboxymethyl dextran. Cytotoxicity studies indicated that in the absence of an oscillating magnetic field, cell viability was not affected at concentrations of up to 0.6 mg iron oxide/mL. MFH resulted in a significant decrease in cell viability when exposed to a magnetic field for 120 minutes and allowed to rest for 48 hours, compared with similar field applications, but with shorter resting time. The results presented here suggest that MFH most likely induces apoptosis in both cell types. When compared with HWH, MFH produced a significant reduction in cell viability, and these effects appear to be cell-type related.

摘要

氧化铁磁性纳米粒子的胶体悬浮液在暴露于振荡磁场时会消耗能量。这种能量耗散可用于将肿瘤内的温度局部升高到 41°C 至 45°C 之间(称为热疗),以促进细胞死亡,这种治疗方法称为磁流体热疗(MFH)。本工作旨在使用两种癌细胞培养模型(Caco-2(人上皮结直肠腺癌)和 MCF-7(人乳腺癌)),从细胞活力降低的角度定量比较 MFH 和热水热疗(HWH)之间的差异。通过共沉淀法合成了磁铁矿纳米粒子,并通过吸附的羧甲基葡聚糖进行了功能化。细胞毒性研究表明,在不存在振荡磁场的情况下,细胞活力在高达 0.6 mg 氧化铁/mL 的浓度下不受影响。与类似的磁场应用相比,MFH 在暴露磁场 120 分钟并允许休息 48 小时后,导致细胞活力显著下降,但休息时间较短。这里提出的结果表明,MFH 很可能在两种细胞类型中都诱导了细胞凋亡。与 HWH 相比,MFH 导致细胞活力显著降低,这些影响似乎与细胞类型有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/a50f5246f769/ijn-6-373f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/fda3e3fbaade/ijn-6-373f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/5fd9c7a5681e/ijn-6-373f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/86e6ee3445d0/ijn-6-373f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/7e2dea9cf039/ijn-6-373f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/a50f5246f769/ijn-6-373f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/fda3e3fbaade/ijn-6-373f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/5fd9c7a5681e/ijn-6-373f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/86e6ee3445d0/ijn-6-373f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/7e2dea9cf039/ijn-6-373f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be9/3075903/a50f5246f769/ijn-6-373f5.jpg

相似文献

[1]
Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles.

Int J Nanomedicine. 2011-2-15

[2]
Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.

Int J Nanomedicine. 2013-12-20

[3]
Enhanced proteotoxic stress: one of the contributors for hyperthermic potentiation of the proteasome inhibitor bortezomib using magnetic nanoparticles.

Biomater Sci. 2014-10-16

[4]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[5]
Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum.

J Nanosci Nanotechnol. 2011-5

[6]
Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.

Biomaterials. 2016-11-9

[7]
Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity.

Int J Nanomedicine. 2013-3-6

[8]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[9]
Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity.

Int J Nanomedicine. 2013-7-23

[10]
Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.

Biomaterials. 2017-1-31

引用本文的文献

[1]
Acoustic Bioprinting: A Glimpse Into an Emerging Field.

Small Methods. 2025-7-26

[2]
Magnetic hyperthermia-triggered multi-functional thermo-responsive lipid nanoparticles for enhanced paclitaxel release and cytotoxicity.

Nanoscale Adv. 2025-4-22

[3]
The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy.

Pharmaceutics. 2025-3-25

[4]
Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy.

Int J Nanomedicine. 2024-12-29

[5]
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma.

Pharmaceutics. 2023-3-2

[6]
Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia.

ACS Nano. 2023-4-11

[7]
Magnetic Nanoclusters Stabilized with Poly[3,4-Dihydroxybenzhydrazide] as Efficient Therapeutic Agents for Cancer Cells Destruction.

Nanomaterials (Basel). 2023-3-3

[8]
Development of handheld induction heaters for magnetic fluid hyperthermia applications andevaluation on ovarian and prostate cancer cell lines.

Biomed Phys Eng Express. 2023-3-10

[9]
Engineering Gold Shelled Nanomagnets for Pre-Setting the Operating Temperature for Magnetic Hyperthermia.

Nanomaterials (Basel). 2022-8-12

[10]
Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies.

Nanomaterials (Basel). 2021-11-10

本文引用的文献

[1]
Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy.

IEEE Trans Magn. 2010-7-1

[2]
Biological rationales and clinical applications of temperature controlled hyperthermia--implications for multimodal cancer treatments.

Curr Med Chem. 2010

[3]
The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging.

Int J Hyperthermia. 2010

[4]
Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia.

P R Health Sci J. 2009-9

[5]
Arrhenius relationships from the molecule and cell to the clinic.

Int J Hyperthermia. 2009-2

[6]
Synthesis and colloidal properties of polyether-magnetite complexes in water and phosphate-buffered saline.

Langmuir. 2009-1-20

[7]
Clinical applications of magnetic nanoparticles for hyperthermia.

Int J Hyperthermia. 2008-9

[8]
Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth.

J Natl Cancer Inst. 2008-3-5

[9]
Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone.

Prostate. 2008-5-15

[10]
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.

J Am Chem Soc. 2007-3-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索