Suppr超能文献

文本摘要是一种决策支持辅助工具。

Text summarization as a decision support aid.

机构信息

Department of Biomedical Informatics, University of Utah, HSEB 5775, Salt Lake City, UT 84112, USA.

出版信息

BMC Med Inform Decis Mak. 2012 May 23;12:41. doi: 10.1186/1472-6947-12-41.

Abstract

BACKGROUND

PubMed data potentially can provide decision support information, but PubMed was not exclusively designed to be a point-of-care tool. Natural language processing applications that summarize PubMed citations hold promise for extracting decision support information. The objective of this study was to evaluate the efficiency of a text summarization application called Semantic MEDLINE, enhanced with a novel dynamic summarization method, in identifying decision support data.

METHODS

We downloaded PubMed citations addressing the prevention and drug treatment of four disease topics. We then processed the citations with Semantic MEDLINE, enhanced with the dynamic summarization method. We also processed the citations with a conventional summarization method, as well as with a baseline procedure. We evaluated the results using clinician-vetted reference standards built from recommendations in a commercial decision support product, DynaMed.

RESULTS

For the drug treatment data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.848 and 0.377, while conventional summarization produced 0.583 average recall and 0.712 average precision, and the baseline method yielded average recall and precision values of 0.252 and 0.277. For the prevention data, Semantic MEDLINE enhanced with dynamic summarization achieved average recall and precision scores of 0.655 and 0.329. The baseline technique resulted in recall and precision scores of 0.269 and 0.247. No conventional Semantic MEDLINE method accommodating summarization for prevention exists.

CONCLUSION

Semantic MEDLINE with dynamic summarization outperformed conventional summarization in terms of recall, and outperformed the baseline method in both recall and precision. This new approach to text summarization demonstrates potential in identifying decision support data for multiple needs.

摘要

背景

PubMed 数据可能提供决策支持信息,但 PubMed 并非专门设计为即时护理工具。对 PubMed 引文进行总结的自然语言处理应用程序有望提取决策支持信息。本研究的目的是评估一种名为 Semantic MEDLINE 的文本摘要应用程序的效率,该应用程序通过一种新的动态摘要方法增强,以识别决策支持数据。

方法

我们下载了涉及预防和药物治疗四种疾病主题的 PubMed 引文。然后,我们使用 Semantic MEDLINE 处理引文,该应用程序通过新的动态摘要方法进行了增强。我们还使用常规摘要方法和基线过程处理引文。我们使用来自商业决策支持产品 DynaMed 中建议的临床医生审查的参考标准来评估结果。

结果

对于药物治疗数据,通过动态摘要增强的 Semantic MEDLINE 实现了 0.848 的平均召回率和 0.377 的平均精度,而常规摘要方法产生了 0.583 的平均召回率和 0.712 的平均精度,基线方法的平均召回率和平均精度分别为 0.252 和 0.277。对于预防数据,通过动态摘要增强的 Semantic MEDLINE 实现了 0.655 的平均召回率和 0.329 的平均精度。基线技术的召回率和精度分别为 0.269 和 0.247。没有用于预防的常规 Semantic MEDLINE 方法可以适应摘要。

结论

在召回率方面,具有动态摘要功能的 Semantic MEDLINE 优于常规摘要方法,在召回率和精度方面均优于基线方法。这种新的文本摘要方法在识别多种需求的决策支持数据方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e36/3461485/90967b0b23b9/1472-6947-12-41-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验