Suppr超能文献

AskHERMES:一个用于复杂临床问题的在线问答系统。

AskHERMES: An online question answering system for complex clinical questions.

机构信息

Department of Health Sciences, University of Wisconsin-Milwaukee, 2400 E. Hartford Avenue, Milwaukee, WI 53211, USA.

出版信息

J Biomed Inform. 2011 Apr;44(2):277-88. doi: 10.1016/j.jbi.2011.01.004. Epub 2011 Jan 21.

Abstract

OBJECTIVE

Clinical questions are often long and complex and take many forms. We have built a clinical question answering system named AskHERMES to perform robust semantic analysis on complex clinical questions and output question-focused extractive summaries as answers.

DESIGN

This paper describes the system architecture and a preliminary evaluation of AskHERMES, which implements innovative approaches in question analysis, summarization, and answer presentation. Five types of resources were indexed in this system: MEDLINE abstracts, PubMed Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia articles.

MEASUREMENT

We compared the AskHERMES system with Google (Google and Google Scholar) and UpToDate and asked physicians to score the three systems by ease of use, quality of answer, time spent, and overall performance.

RESULTS

AskHERMES allows physicians to enter a question in a natural way with minimal query formulation and allows physicians to efficiently navigate among all the answer sentences to quickly meet their information needs. In contrast, physicians need to formulate queries to search for information in Google and UpToDate. The development of the AskHERMES system is still at an early stage, and the knowledge resource is limited compared with Google or UpToDate. Nevertheless, the evaluation results show that AskHERMES' performance is comparable to the other systems. In particular, when answering complex clinical questions, it demonstrates the potential to outperform both Google and UpToDate systems.

CONCLUSIONS

AskHERMES, available at http://www.AskHERMES.org, has the potential to help physicians practice evidence-based medicine and improve the quality of patient care.

摘要

目的

临床问题通常冗长且复杂,并具有多种形式。我们构建了一个名为 AskHERMES 的临床问答系统,用于对复杂的临床问题进行强大的语义分析,并输出以问题为中心的提取式摘要作为答案。

设计

本文介绍了 AskHERMES 的系统架构和初步评估,该系统在问题分析、总结和答案呈现方面采用了创新方法。该系统索引了五类资源:MEDLINE 摘要、PubMed Central 全文文章、eMedicine 文档、临床指南和维基百科文章。

测量

我们将 AskHERMES 系统与 Google(Google 和 Google Scholar)和 UpToDate 进行了比较,并请医生根据易用性、答案质量、花费时间和整体表现对这三个系统进行评分。

结果

AskHERMES 允许医生以自然的方式输入问题,只需进行最少的查询构建,并允许医生在所有答案句子之间高效导航,以快速满足他们的信息需求。相比之下,医生需要在 Google 和 UpToDate 中构建查询来搜索信息。AskHERMES 系统的开发仍处于早期阶段,与 Google 或 UpToDate 相比,其知识资源有限。尽管如此,评估结果表明 AskHERMES 的性能可与其他系统相媲美。特别是在回答复杂的临床问题时,它具有超越 Google 和 UpToDate 系统的潜力。

结论

AskHERMES 可在 http://www.AskHERMES.org 上获得,它有可能帮助医生实践循证医学并提高患者护理质量。

相似文献

1
AskHERMES: An online question answering system for complex clinical questions.
J Biomed Inform. 2011 Apr;44(2):277-88. doi: 10.1016/j.jbi.2011.01.004. Epub 2011 Jan 21.
2
Usability survey of biomedical question answering systems.
Hum Genomics. 2012 Sep 1;6(1):17. doi: 10.1186/1479-7364-6-17.
3
Automatically extracting information needs from complex clinical questions.
J Biomed Inform. 2010 Dec;43(6):962-71. doi: 10.1016/j.jbi.2010.07.007. Epub 2010 Jul 27.
4
SemBioNLQA: A semantic biomedical question answering system for retrieving exact and ideal answers to natural language questions.
Artif Intell Med. 2020 Jan;102:101767. doi: 10.1016/j.artmed.2019.101767. Epub 2019 Nov 28.
5
Beyond information retrieval--medical question answering.
AMIA Annu Symp Proc. 2006;2006:469-73.
6
Development, implementation, and a cognitive evaluation of a definitional question answering system for physicians.
J Biomed Inform. 2007 Jun;40(3):236-51. doi: 10.1016/j.jbi.2007.03.002. Epub 2007 Mar 12.
7
Classification of clinically useful sentences in clinical evidence resources.
J Biomed Inform. 2016 Apr;60:14-22. doi: 10.1016/j.jbi.2016.01.003. Epub 2016 Jan 13.
8
How Does ChatGPT Use Source Information Compared With Google? A Text Network Analysis of Online Health Information.
Clin Orthop Relat Res. 2024 Apr 1;482(4):578-588. doi: 10.1097/CORR.0000000000002995. Epub 2024 Mar 1.
9
An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition.
BMC Bioinformatics. 2015 Apr 30;16:138. doi: 10.1186/s12859-015-0564-6.
10

引用本文的文献

1
Semantic classification of Indonesian consumer health questions.
J Biomed Semantics. 2025 Jul 28;16(1):13. doi: 10.1186/s13326-025-00334-5.
2
Sentences, entities, and keyphrases extraction from consumer health forums using multi-task learning.
J Biomed Semantics. 2025 May 6;16(1):8. doi: 10.1186/s13326-025-00329-2.
3
Optimizing biomedical information retrieval with a keyword frequency-driven prompt enhancement strategy.
BMC Bioinformatics. 2024 Aug 27;25(1):281. doi: 10.1186/s12859-024-05902-7.
4
Natural Language Processing in medicine and ophthalmology: A review for the 21st-century clinician.
Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100084. doi: 10.1016/j.apjo.2024.100084. Epub 2024 Jul 25.
5
Question answering systems for health professionals at the point of care-a systematic review.
J Am Med Inform Assoc. 2024 Apr 3;31(4):1009-1024. doi: 10.1093/jamia/ocae015.
6
A transformer fine-tuning strategy for text dialect identification.
Neural Comput Appl. 2023;35(8):6115-6124. doi: 10.1007/s00521-022-07944-5. Epub 2022 Nov 15.
7
What Would it Take to get Biomedical QA Systems into Practice?
Proc Conf Empir Methods Nat Lang Process. 2021 Nov;2021:28-41. doi: 10.18653/v1/2021.mrqa-1.3.
8
BPI-MVQA: a bi-branch model for medical visual question answering.
BMC Med Imaging. 2022 Apr 29;22(1):79. doi: 10.1186/s12880-022-00800-x.
9
Question Answering System Based on Knowledge Graph in Traditional Chinese Medicine Diagnosis and Treatment of Viral Hepatitis B.
Biomed Res Int. 2022 Feb 14;2022:7139904. doi: 10.1155/2022/7139904. eCollection 2022.
10
A Light-Weight Text Summarization System for Fast Access to Medical Evidence.
Front Digit Health. 2020 Dec 4;2:585559. doi: 10.3389/fdgth.2020.585559. eCollection 2020.

本文引用的文献

2
Military medical informatics: accessing information in the deployed environment.
Mil Med. 2009 Mar;174(3):259-64. doi: 10.7205/milmed-d-00-7108.
3
Google Scholar versus PubMed in locating primary literature to answer drug-related questions.
Ann Pharmacother. 2009 Mar;43(3):478-84. doi: 10.1345/aph.1L223. Epub 2009 Mar 3.
4
Voice capture of medical residents' clinical information needs during an inpatient rotation.
J Am Med Inform Assoc. 2009 May-Jun;16(3):387-94. doi: 10.1197/jamia.M2940. Epub 2009 Mar 4.
5
Evaluation of e-textbooks. DynaMed, MD Consult and UpToDate.
Aust Fam Physician. 2008 Oct;37(10):878-82.
8
Infobuttons: anticipatory passive decision support.
AMIA Annu Symp Proc. 2008 Nov 6:1203-4.
9
Information needs, Infobutton Manager use, and satisfaction by clinician type: a case study.
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):140-2. doi: 10.1197/jamia.M2746. Epub 2008 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验