Suppr超能文献

AskHERMES:一个用于复杂临床问题的在线问答系统。

AskHERMES: An online question answering system for complex clinical questions.

机构信息

Department of Health Sciences, University of Wisconsin-Milwaukee, 2400 E. Hartford Avenue, Milwaukee, WI 53211, USA.

出版信息

J Biomed Inform. 2011 Apr;44(2):277-88. doi: 10.1016/j.jbi.2011.01.004. Epub 2011 Jan 21.

Abstract

OBJECTIVE

Clinical questions are often long and complex and take many forms. We have built a clinical question answering system named AskHERMES to perform robust semantic analysis on complex clinical questions and output question-focused extractive summaries as answers.

DESIGN

This paper describes the system architecture and a preliminary evaluation of AskHERMES, which implements innovative approaches in question analysis, summarization, and answer presentation. Five types of resources were indexed in this system: MEDLINE abstracts, PubMed Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia articles.

MEASUREMENT

We compared the AskHERMES system with Google (Google and Google Scholar) and UpToDate and asked physicians to score the three systems by ease of use, quality of answer, time spent, and overall performance.

RESULTS

AskHERMES allows physicians to enter a question in a natural way with minimal query formulation and allows physicians to efficiently navigate among all the answer sentences to quickly meet their information needs. In contrast, physicians need to formulate queries to search for information in Google and UpToDate. The development of the AskHERMES system is still at an early stage, and the knowledge resource is limited compared with Google or UpToDate. Nevertheless, the evaluation results show that AskHERMES' performance is comparable to the other systems. In particular, when answering complex clinical questions, it demonstrates the potential to outperform both Google and UpToDate systems.

CONCLUSIONS

AskHERMES, available at http://www.AskHERMES.org, has the potential to help physicians practice evidence-based medicine and improve the quality of patient care.

摘要

目的

临床问题通常冗长且复杂,并具有多种形式。我们构建了一个名为 AskHERMES 的临床问答系统,用于对复杂的临床问题进行强大的语义分析,并输出以问题为中心的提取式摘要作为答案。

设计

本文介绍了 AskHERMES 的系统架构和初步评估,该系统在问题分析、总结和答案呈现方面采用了创新方法。该系统索引了五类资源:MEDLINE 摘要、PubMed Central 全文文章、eMedicine 文档、临床指南和维基百科文章。

测量

我们将 AskHERMES 系统与 Google(Google 和 Google Scholar)和 UpToDate 进行了比较,并请医生根据易用性、答案质量、花费时间和整体表现对这三个系统进行评分。

结果

AskHERMES 允许医生以自然的方式输入问题,只需进行最少的查询构建,并允许医生在所有答案句子之间高效导航,以快速满足他们的信息需求。相比之下,医生需要在 Google 和 UpToDate 中构建查询来搜索信息。AskHERMES 系统的开发仍处于早期阶段,与 Google 或 UpToDate 相比,其知识资源有限。尽管如此,评估结果表明 AskHERMES 的性能可与其他系统相媲美。特别是在回答复杂的临床问题时,它具有超越 Google 和 UpToDate 系统的潜力。

结论

AskHERMES 可在 http://www.AskHERMES.org 上获得,它有可能帮助医生实践循证医学并提高患者护理质量。

相似文献

3
Automatically extracting information needs from complex clinical questions.从复杂的临床问题中自动提取信息需求。
J Biomed Inform. 2010 Dec;43(6):962-71. doi: 10.1016/j.jbi.2010.07.007. Epub 2010 Jul 27.
7

引用本文的文献

6
A transformer fine-tuning strategy for text dialect identification.一种用于文本方言识别的Transformer微调策略。
Neural Comput Appl. 2023;35(8):6115-6124. doi: 10.1007/s00521-022-07944-5. Epub 2022 Nov 15.
7
What Would it Take to get Biomedical QA Systems into Practice?如何将生物医学问答系统付诸实践?
Proc Conf Empir Methods Nat Lang Process. 2021 Nov;2021:28-41. doi: 10.18653/v1/2021.mrqa-1.3.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验