Universität Leipzig, Institut für Informatik, Leipzig, Saxony, Germany.
PLoS One. 2012;7(5):e36759. doi: 10.1371/journal.pone.0036759. Epub 2012 May 14.
Evidence-based medicine (EBM), in the field of neurosurgery, relies on diagnostic studies since Randomized Controlled Trials (RCTs) are uncommon. However, diagnostic study reporting is less standardized which increases the difficulty in reliably aggregating results. Although there have been several initiatives to standardize reporting, they have shown to be sub-optimal. Additionally, there is no central repository for storing and retrieving related articles.
In our approach we formulate a computational diagnostic ontology containing 91 elements, including classes and sub-classes, which are required to conduct Systematic Reviews-Meta Analysis (SR-MA) for diagnostic studies, which will assist in standardized reporting of diagnostic articles. SR-MA are studies that aggregate several studies to come to one conclusion for a particular research question. We also report high percentage of agreement among five observers as a result of the interobserver agreement test that we conducted among them to annotate 13 articles using the diagnostic ontology. Moreover, we extend our existing repository CERR-N to include diagnostic studies.
The ontology is available for download as an.owl file at: http://bioportal.bioontology.org/ontologies/3013.
循证医学(EBM)在神经外科学领域依赖于诊断研究,因为随机对照试验(RCT)并不常见。然而,诊断研究报告的标准化程度较低,这增加了可靠地汇总结果的难度。尽管已经有几项旨在标准化报告的举措,但它们被证明并不理想。此外,没有中央存储库来存储和检索相关文章。
在我们的方法中,我们制定了一个包含 91 个元素的计算诊断本体,包括类和子类,这些元素是进行诊断研究的系统综述-荟萃分析(SR-MA)所必需的,这将有助于标准化诊断文章的报告。SR-MA 是汇总多项研究以得出特定研究问题的一个结论的研究。我们还报告了五位观察者之间的高度一致性,这是我们对他们进行的观察者间一致性测试的结果,使用诊断本体对 13 篇文章进行注释。此外,我们扩展了现有的 CERR-N 存储库,以包含诊断研究。
本体可作为.owl 文件从以下网址下载:http://bioportal.bioontology.org/ontologies/3013。