Il'icheva I A, Vlasov P K, Esipova N G, Tumanyan V G
a Engelhardt Institute of Molecular Biology RAS , Vavilov str., 32 , 119991 , Moscow , Russia.
J Biomol Struct Dyn. 2010 Apr;27(5):677-693. doi: 10.1080/07391102.2010.10508581.
Abstract It is well known, that local B→A transformation in DNA is involved in several biological processes. In vitro B↔A transition is sequence-specific. The physical basis of this specificity is not known yet. Here we analyze the effect of intramolecular interactions on the structural behavior of the GG/CC and AA/TT steps. These steps exemplify sequence specific bias to the B- or A-form structure. Optimization of potential energy of the molecular systems composed of an octanucle-otide, neutralized by Na(+) and solvated with TIP3P water molecules in rectangular box with periodic boundary conditions gives the statistically representative sets of low energy structures for GG/CC and AA/TT steps in the middle of the diverse flanking sequences. Permissible 3D variations of GG/CC and AA/TT, and correlation of the relative motion of base pairs in these steps were analyzed. AA/TT step permits high variability for low energy conformers in the B-form DNA and small variability for low energy conformers in the A-form DNA. In contrast GG/CC step permits high variability for low energy conformers in the A-form DNA and small variability for low energy conformers in the B-form DNA. The relative motion of base pairs in GG/CC step is high correlated, while in AA/TT step this correlation is notably less. Atom-atom interactions inside-the-step always favors the B-form and their component - stacking interactions (atomatom interactions between nucleic bases) is crucial for the duplex stabilization. Formation of the A-form for both steps is a result of interactions with the flanking sequences and water-cation environment in the box. The average energy difference between conformations presenting B-form and A-form for the GG/CC step is high, while for the AA/TT step it is rather low. Thus, intramolecular interactions in GG/CC and AA/TT steps affect the possible conformational diversity ("conformational entropy") of the A- and B- type structures of DNA step. This determines the known bias of the A-form DNA depending on the enrichment of sequences with GG/CC. If structural tuning during the process of protein-DNA complex formation lead to the local B→A transformation of DNA, it is largely directed by high conformational diversity of GG/CC step in the A-form. In such a case the presence in the target site of both kinds of examined steps ensures the reversible character of ligand binding.
摘要 众所周知,DNA中的局部B→A转变参与了多个生物学过程。体外B↔A转变具有序列特异性。这种特异性的物理基础尚不清楚。在此,我们分析了分子内相互作用对GG/CC和AA/TT步移结构行为的影响。这些步移体现了对B型或A型结构的序列特异性偏好。由八聚核苷酸组成的分子系统,经Na(+)中和并在具有周期性边界条件的矩形盒中用TIP3P水分子溶剂化,对其势能进行优化,得到了不同侧翼序列中间GG/CC和AA/TT步移的低能结构的统计学代表性集合。分析了GG/CC和AA/TT步移允许的三维变化以及这些步移中碱基对相对运动的相关性。AA/TT步移在B型DNA中低能构象允许高变异性,在A型DNA中低能构象允许小变异性。相反,GG/CC步移在A型DNA中低能构象允许高变异性,在B型DNA中低能构象允许小变异性。GG/CC步移中碱基对的相对运动高度相关,而在AA/TT步移中这种相关性明显较低。步移内部的原子-原子相互作用总是有利于B型,其组成部分——堆积相互作用(核酸碱基之间的原子-原子相互作用)对双链体稳定至关重要。两个步移形成A型是与侧翼序列以及盒中的水-阳离子环境相互作用的结果。GG/CC步移呈现B型和A型构象之间的平均能量差较高,而AA/TT步移的平均能量差则相当低。因此,GG/CC和AA/TT步移中的分子内相互作用影响了DNA步移A 型和B型结构可能的构象多样性(“构象熵”)。这决定了已知的A型DNA偏好取决于GG/CC序列的富集情况。如果在蛋白质-DNA复合物形成过程中的结构调整导致DNA的局部B→A转变,很大程度上是由A型中GG/CC步移的高构象多样性所引导的。在这种情况下,靶位点中两种被研究的步移的存在确保了配体结合的可逆性。