Lu X J, Shakked Z, Olson W K
Department of Chemistry, Wright-Rieman Laboratories, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854-8087, USA.
J Mol Biol. 2000 Jul 21;300(4):819-40. doi: 10.1006/jmbi.2000.3690.
Recognition and biochemical processing of DNA requires that proteins and other ligands are able to distinguish their DNA binding sites from other parts of the molecule. In addition to the direct recognition elements embedded in the linear sequence of bases (i.e. hydrogen bonding sites), these molecular agents seemingly sense and/or induce an "indirect" conformational response in the DNA base-pairs that facilitates close intermolecular fitting. As part of an effort to decipher this sequence-dependent structural code, we have analyzed the extent of B-->A conformational conversion at individual base-pair steps in protein and drug-bound DNA crystal complexes. We take advantage of a novel structural parameter, the position of the phosphorus atom in the dimer reference frame, as well as other documented measures of local helical structure, e.g. torsion angles, base-pair step parameters. Our analysis pinpoints ligand-induced conformational changes that are difficult to detect from the global perspective used in other studies of DNA structure. The collective data provide new structural details on the conformational pathway connecting A and B-form DNA and illustrate how both proteins and drugs take advantage of the intrinsic conformational mechanics of the double helix. Significantly, the base-pair steps which exhibit pure A-DNA conformations in the crystal complexes follow the scale of A-forming tendencies exhibited by synthetic oligonucleotides in solution and the known polymorphism of synthetic DNA fibers. Moreover, most crystallographic examples of complete B-to-A deformations occur in complexes of DNA with enzymes that perform cutting or sealing operations at the (O3'-P) phosphodiester linkage. The B-->A transformation selectively exposes sugar-phosphate atoms, such as the 3'-oxygen atom, ordinarily buried within the chain backbone for enzymatic attack. The forced remodeling of DNA to the A-form also provides a mechanism for smoothly bending the double helix, for controlling the widths of the major and minor grooves, and for accessing the minor groove edges of individual base-pairs.
DNA的识别和生化处理要求蛋白质和其他配体能够将其DNA结合位点与分子的其他部分区分开来。除了嵌入碱基线性序列中的直接识别元件(即氢键位点)外,这些分子因子似乎还能感知和/或诱导DNA碱基对中的“间接”构象反应,从而促进紧密的分子间契合。作为解读这种序列依赖性结构密码工作的一部分,我们分析了蛋白质和药物结合的DNA晶体复合物中单个碱基对步骤处B→A构象转换的程度。我们利用了一个新的结构参数,即二聚体参考系中磷原子的位置,以及其他已记录的局部螺旋结构测量方法,如扭转角、碱基对步长参数。我们的分析确定了配体诱导的构象变化,这些变化从其他DNA结构研究中使用的整体角度很难检测到。这些汇总数据提供了关于连接A和B型DNA的构象途径的新结构细节,并说明了蛋白质和药物如何利用双螺旋的内在构象机制。值得注意的是,在晶体复合物中呈现纯A-DNA构象的碱基对步骤遵循溶液中合成寡核苷酸所表现出的A形成倾向的规模以及合成DNA纤维已知的多态性。此外,DNA与在(O3'-P)磷酸二酯键处进行切割或密封操作的酶形成的复合物中,大多数完整的B到A变形的晶体学实例都出现了。B→A转变选择性地暴露了糖-磷酸原子,如通常埋在链骨架内用于酶攻击的3'-氧原子。将DNA强制重塑为A形式还提供了一种机制,用于平滑地弯曲双螺旋、控制大沟和小沟的宽度以及接近单个碱基对的小沟边缘。