Equipe de Géomagnétisme, Institut de Physique du Globe de Paris, UMR7154, Université Paris Diderot, Sorbonne Paris Cité, 1, rue Jussieu, F-75005 Paris, France.
J Environ Radioact. 2012 Nov;113:45-56. doi: 10.1016/j.jenvrad.2012.04.010. Epub 2012 May 24.
Radon generation in natural systems and building materials is controlled by the effective radium concentration EC(Ra), product of the radium concentration C(Ra) and the emanation factor E. An experimental method is proposed to measure EC(Ra) in the laboratory by radon accumulation experiments using less than 5 g of sample inserted in 125 mL scintillation flasks. Accumulation curves with fine temporal resolution can be obtained, allowing the simultaneous determination of the effective leakage rate. The detection limit, defined as the EC(Ra) value giving a probability larger than 90% for a determination with a one-sigma uncertainty better than 50%, is moderate, varying from 2 to 5 Bq kg(-1) depending on the conditions. Obtained punctual uncertainties on EC(Ra) vary from about 10 to 20% at 10 Bq kg(-1) to less than 3% for EC(Ra) larger than 500 Bq kg(-1). The representativity of small samples to estimate meaningful values at site or system level is, however, a definite limitation of the method, and the sample dispersion needs to be considered carefully in every case. Nevertheless, the value obtained with 5 g or less differs on average by 9 ± 13% from the value given by standard methods using 100 g or more, thus is sufficiently reliable for most applications. When EC(Ra) is sufficiently large, the temperature sensitivity of EC(Ra) can be measured reliably with this method, with obtained mean values ranging from 0.39 ± 0.05% °C(-1) for Compreignac granite, to 2.8 ± 0.2% °C(-1) for La Crouzille pitchblende, both from the centre of France. This method is useful to study dedicated problems, such as the small scale variability of EC(Ra), and in circumstances when only a small amount of sample is available, for example from remote areas or from precious materials such as historical building stones.
天然系统和建筑材料中的氡生成受有效镭浓度 EC(Ra)的控制,其为镭浓度 C(Ra)与逸出因子 E 的乘积。提出了一种实验方法,通过使用插入 125 毫升闪烁瓶中的小于 5 g 样品的氡积累实验,在实验室中测量 EC(Ra)。可以获得具有精细时间分辨率的积累曲线,从而可以同时确定有效泄漏率。检测限定义为 EC(Ra)值,在具有优于 50%的一个标准差不确定性的一次测定中,其概率大于 90%。检测限适中,取决于条件,范围从 2 到 5 Bq kg(-1)。在 10 Bq kg(-1)处,EC(Ra)的确定性不确定度约为 10%至 20%,而对于 EC(Ra)大于 500 Bq kg(-1),不确定度小于 3%。然而,小样品的代表性对于在现场或系统水平上估计有意义的值是该方法的一个明显限制,在每种情况下都需要仔细考虑样品的分散度。尽管如此,使用 5 g 或更少的样品获得的值平均与使用 100 g 或更多的标准方法给出的值相差 9 ± 13%,因此对于大多数应用而言足够可靠。当 EC(Ra)足够大时,该方法可可靠地测量 EC(Ra)的温度灵敏度,从中获得的平均值范围从法国中部的 Compreignac 花岗岩的 0.39 ± 0.05% °C(-1)到 La Crouzille 沥青铀矿的 2.8 ± 0.2% °C(-1)。该方法可用于研究特定问题,例如 EC(Ra)的小尺度变异性,并且在只有少量样品可用的情况下,例如从偏远地区或从珍贵材料(如历史建筑石材)获得的情况下。