Suppr超能文献

利用一种方法结合遥感数据评估中国新安江流域的非点源污染。

A method coupled with remote sensing data to evaluate non-point source pollution in the Xin'anjiang catchment of China.

机构信息

Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, PR China.

出版信息

Sci Total Environ. 2012 Jul 15;430:132-43. doi: 10.1016/j.scitotenv.2012.04.052. Epub 2012 May 25.

Abstract

Non-point source (NPS) pollution has been recognized as the largest threat to water resources throughout the world, and the evaluation of NPS loads is a priority. In China, some models, such as SWAT (Soil and Water Assessment Tools) model, have been widely used at the watershed scale. However, variations in natural and social factors make it difficult to find a proper model to use on NPS pollution management in China. In this study, a "Dualistic Structure" model is coupled with remote sensing data to capture the spatial and temporal processes of NPS pollution. Land parameters were derived from HJ-1A and HJ-1B satellite data (resolution 30 m), which offered greatly enhanced spatial resolution. This approach offers the advantage of being a rapid estimation system with fairly precise knowledge of the distribution, sources and quantities of NPS pollutants, and it can be used at the country scale, including in areas with insufficient data. The method is used in the Xin'anjiang catchment, an important water source for Hangzhou city, China. The simulation in this study includes the spatial distribution of monthly total nitrogen (TN), total phosphorous (TP), ammonia nitrogen (NH(4)-N) and chemical oxygen demand (COD(cr)) loads and the total production of NPS pollutants. The simulations were compared to pollution census (PC) data in 2010 and the results of SWAT model, with an average R(2) larger than 0.7. Additionally, the impacts of soil erosion and human activities on NPS pollution were assessed, indicating that soil and water conservation is very significant factor in the Xin'anjiang catchment. Results indicate that by coupling remote sensing data and parameter retrieval techniques to "Dualistic Structure" models, estimations of NPS loads on the catchment scale can be improved by spatial pixel-based modeling. This rapid NPS estimation system will offer effective support to policy makers for environmental management in China.

摘要

非点源(NPS)污染已被公认为是全世界水资源的最大威胁,因此评估 NPS 负荷是当务之急。在中国,一些模型,如 SWAT(土壤和水评估工具)模型,已被广泛应用于流域尺度。然而,自然和社会因素的变化使得难以找到一个合适的模型来应用于中国的 NPS 污染管理。本研究将“二元结构”模型与遥感数据耦合,以捕捉 NPS 污染的时空过程。土地参数来源于 HJ-1A 和 HJ-1B 卫星数据(分辨率 30 m),这大大提高了空间分辨率。该方法具有快速估算系统的优势,能够较为准确地了解 NPS 污染物的分布、来源和数量,并且可以在中国这样的国家尺度上应用,包括数据不足的地区。该方法应用于中国杭州市重要水源地——新安江流域。本研究的模拟包括每月总氮(TN)、总磷(TP)、氨氮(NH4-N)和化学需氧量(CODcr)负荷的空间分布以及 NPS 污染物的总生成量。模拟结果与 2010 年污染普查(PC)数据和 SWAT 模型的结果进行了比较,平均 R2 大于 0.7。此外,还评估了土壤侵蚀和人类活动对 NPS 污染的影响,表明水土保持是新安江流域的一个非常重要的因素。结果表明,通过将遥感数据和参数反演技术与“二元结构”模型耦合,可以通过基于空间像素的建模来提高流域尺度 NPS 负荷的估算精度。这种快速的 NPS 估算系统将为中国的环境管理者提供有效的政策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验