Suppr超能文献

探究影响两个具有鲜明对比气候区水质的关键因素。

Exploration of the critical factors influencing the water quality in two contrasting climatic regions.

机构信息

Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.

Khoury College of Computer Sciences, Northeastern University, San Jose, CA, 95138, USA.

出版信息

Environ Sci Pollut Res Int. 2020 Apr;27(11):12601-12612. doi: 10.1007/s11356-020-07786-5. Epub 2020 Jan 31.

Abstract

Over the past few decades, rivers have become severely polluted as a result of receiving vast quantities of domestic and industrial wastewater. The identification of the major factors that influence water quality is crucial to understand the interactions of anthropogenic and natural factors and develop river restoration projects. In this study, the QUAL2Kw water quality model was used to quantitatively evaluate the most critical factors for water quality at two sites with different meteorological conditions and urban scales. The genetic algorithm (GA) was used to optimize the parameters in the model. The Monte Carlo simulation (MCS) method was used to assess the model uncertainty and sensitivity in all reaches for five water quality outputs (temperature, CBOD, DO, TP, and TN) in two seasons. The K-means clustering method associated with the sensitivity results was used to identify the major factors influencing the water quality in all reaches from the input data and the model parameters. The results showed that CBOD, TN, and TP were most sensitive to headwater and tributary quality. DO tended to be affected by more natural reactions than the other water quality indicators. In the cold and dry seasons and the more urbanized areas, river pollution was more severe, and the impact of natural reactions was reduced. The simulation results revealed the reliability of QUAL2Kw in modeling the quantity and quality of all river reaches. The method applied in this study is beneficial for the improvement and management of the water environment.

摘要

在过去的几十年中,由于接收了大量的生活污水和工业废水,河流受到了严重的污染。识别影响水质的主要因素对于理解人为因素和自然因素的相互作用以及开发河流恢复项目至关重要。在这项研究中,使用 QUAL2Kw 水质模型定量评估了两个具有不同气象条件和城市规模的地点的水质的最关键因素。使用遗传算法 (GA) 对模型中的参数进行了优化。使用蒙特卡罗模拟 (MCS) 方法评估了所有河段五个水质输出(温度、CBOD、DO、TP 和 TN)在两个季节中的模型不确定性和敏感性。使用与敏感性结果相关的 K-均值聚类方法,从输入数据和模型参数中确定了所有河段水质的主要影响因素。结果表明,CBOD、TN 和 TP 对源头和支流的水质最为敏感。DO 比其他水质指标更容易受到自然反应的影响。在寒冷干燥的季节和城市化程度较高的地区,河流污染更为严重,自然反应的影响也会降低。模拟结果表明 QUAL2Kw 在模拟所有河段的数量和质量方面具有可靠性。本研究中应用的方法有利于水环境的改善和管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验