Suppr超能文献

利用深度测序优化设计的流感抑制剂的亲和力、特异性和功能。

Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing.

机构信息

Department of Biochemistry, University of Washington, Seattle, Washington, USA.

出版信息

Nat Biotechnol. 2012 May 27;30(6):543-8. doi: 10.1038/nbt.2214.

Abstract

We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.

摘要

我们证明,通过深度测序获得的综合序列-功能图谱可用于重新编程相互作用特异性,并通过组合许多在传统方法中无法检测到的单独的小贡献来跨越亲和力成熟中的瓶颈。我们使用这种方法来优化两种针对 H1N1 流感血凝素的计算设计抑制剂,在两种情况下,都获得了具有亚纳摩尔结合亲和力的变体。其中最有效的一种是一种 51 个残基的蛋白质,对所有流感 1 组血凝素具有广泛的交叉反应性,包括人类 H2,并且能够中和 H1N1 病毒,其效力可与几种人类单克隆抗体相媲美,证明了计算设计后进行全面的能量景观图谱可以生成具有潜在治疗用途的蛋白质。

相似文献

3
Next-generation protein engineering targets influenza.下一代蛋白质工程瞄准流感。
Nat Biotechnol. 2012 Jun 7;30(6):502-4. doi: 10.1038/nbt.2268.
9
New type of anti-influenza agents based on benzo[d][1,3]dithiol core.基于苯并[d][1,3]二硫杂环戊烯核心的新型抗流感药物。
Bioorg Med Chem Lett. 2020 Dec 15;30(24):127653. doi: 10.1016/j.bmcl.2020.127653. Epub 2020 Oct 28.

引用本文的文献

3
De novo design of D-peptide ligands: Application to influenza virus hemagglutinin.D-肽配体的从头设计:在流感病毒血凝素中的应用。
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2426554122. doi: 10.1073/pnas.2426554122. Epub 2025 Jun 27.
10
Addressing epistasis in the design of protein function.解决蛋白质功能设计中的上位效应。
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2314999121. doi: 10.1073/pnas.2314999121. Epub 2024 Aug 12.

本文引用的文献

5
Deep mutational scanning: assessing protein function on a massive scale.深度突变扫描:大规模评估蛋白质功能。
Trends Biotechnol. 2011 Sep;29(9):435-42. doi: 10.1016/j.tibtech.2011.04.003. Epub 2011 May 10.
6
Experimental illumination of a fitness landscape.实验照亮适应度景观。
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7896-901. doi: 10.1073/pnas.1016024108. Epub 2011 Apr 4.
8
Learning generative models for protein fold families.学习蛋白质折叠家族的生成模型。
Proteins. 2011 Apr;79(4):1061-78. doi: 10.1002/prot.22934. Epub 2011 Jan 25.
10
Rapid construction of empirical RNA fitness landscapes.快速构建经验 RNA 适应度景观。
Science. 2010 Oct 15;330(6002):376-9. doi: 10.1126/science.1192001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验