Suppr超能文献

病毒进化的分子钟与中性理论。

Molecular clock of viral evolution, and the neutral theory.

作者信息

Gojobori T, Moriyama E N, Kimura M

机构信息

National Institute of Genetics, Mishima, Japan.

出版信息

Proc Natl Acad Sci U S A. 1990 Dec;87(24):10015-8. doi: 10.1073/pnas.87.24.10015.

Abstract

Evolution of viral genes is characterized by enormously high speed compared with that of nuclear genes of eukaryotic organisms. In this paper, the evolutionary rates and patterns of base substitutions are examined for retroviral oncogenes, human immunodeficiency viruses (HIV), hepatitis B viruses (HBV), and influenza A viruses. Our results show that the evolutionary process of these viral genes can readily be explained by the neutral theory of molecular evolution. In particular, the neutral theory is supported by our observation that synonymous substitutions always much predominate over nonsynonymous substitutions, even though the substitution rate varies considerably among the viruses. Furthermore, the exact correspondence between the high rates of evolutionary base substitutions and the high rates of production of mutants in RNA viruses fits very nicely to the prediction of the theory. The linear relationship between substitution numbers and time was examined to evaluate the clock-like property of viral evolution. The clock appears to be quite accurate in the influenza A viruses in man.

摘要

与真核生物的核基因相比,病毒基因的进化速度极快。本文研究了逆转录病毒癌基因、人类免疫缺陷病毒(HIV)、乙型肝炎病毒(HBV)和甲型流感病毒的碱基替换进化速率和模式。我们的结果表明,这些病毒基因的进化过程很容易用分子进化的中性理论来解释。特别是,我们观察到同义替换总是比非同义替换占主导地位,这一观察结果支持了中性理论,尽管不同病毒之间的替换率差异很大。此外,RNA病毒中进化碱基替换的高发生率与突变体产生的高发生率之间的精确对应非常符合该理论的预测。研究了替换数与时间之间的线性关系,以评估病毒进化的时钟样特性。在人类的甲型流感病毒中,这种时钟似乎相当准确。

相似文献

1
Molecular clock of viral evolution, and the neutral theory.
Proc Natl Acad Sci U S A. 1990 Dec;87(24):10015-8. doi: 10.1073/pnas.87.24.10015.
3
Molecular evolutionary rates of oncogenes.
J Mol Evol. 1987;26(1-2):148-56. doi: 10.1007/BF02111288.
4
Molecular evolution of the human immunodeficiency and related viruses.
Mol Biol Evol. 1988 May;5(3):237-51. doi: 10.1093/oxfordjournals.molbev.a040495.
5
Molecular evolution of hemagglutinin genes of H1N1 swine and human influenza A viruses.
J Mol Evol. 1991 Jan;32(1):16-23. doi: 10.1007/BF02099924.
6
Rates of evolutionary change in viruses: patterns and determinants.
Nat Rev Genet. 2008 Apr;9(4):267-76. doi: 10.1038/nrg2323. Epub 2008 Mar 4.
7
New insights into the evolutionary rate of hepatitis B virus at different biological scales.
J Virol. 2015 Apr;89(7):3512-22. doi: 10.1128/JVI.03131-14. Epub 2015 Jan 14.
8
Molecular evolution of hepatitis viruses.
Intervirology. 1999;42(2-3):159-65. doi: 10.1159/000024975.
9
Molecular evolution of the hepatitis B virus genome.
J Mol Evol. 1995 Nov;41(5):587-96. doi: 10.1007/BF00175817.
10
Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences.
Proc Natl Acad Sci U S A. 1989 Sep;86(18):7059-62. doi: 10.1073/pnas.86.18.7059.

引用本文的文献

2
Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus.
PLoS Pathog. 2024 Nov 25;20(11):e1012740. doi: 10.1371/journal.ppat.1012740. eCollection 2024 Nov.
4
Neutral theory and beyond: A systematic review of molecular evolution education.
Ecol Evol. 2023 Jul 28;13(8):e10365. doi: 10.1002/ece3.10365. eCollection 2023 Aug.
5
A variant-dependent molecular clock with anomalous diffusion models SARS-CoV-2 evolution in humans.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2303578120. doi: 10.1073/pnas.2303578120. Epub 2023 Jul 17.
7
Detection of Ancient Viruses and Long-Term Viral Evolution.
Viruses. 2022 Jun 18;14(6):1336. doi: 10.3390/v14061336.
8
Stochastic neutral drifts seem prevalent in driving human virome assembly: Neutral, near-neutral and non-neutral theoretic analyses.
Comput Struct Biotechnol J. 2022 Mar 30;20:2029-2041. doi: 10.1016/j.csbj.2022.03.027. eCollection 2022.
10
Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages.
PLoS Genet. 2021 Sep 28;17(9):e1009829. doi: 10.1371/journal.pgen.1009829. eCollection 2021 Sep.

本文引用的文献

1
Pseudogenes as a paradigm of neutral evolution.
Nature. 1981 Jul 16;292(5820):237-9. doi: 10.1038/292237a0.
2
Rapid evolution of RNA genomes.
Science. 1982 Mar 26;215(4540):1577-85. doi: 10.1126/science.7041255.
4
Evolutionary rate at the molecular level.
Nature. 1968 Feb 17;217(5129):624-6. doi: 10.1038/217624a0.
5
Evolution of influenza virus genes.
Mol Biol Evol. 1985 Jul;2(4):289-303. doi: 10.1093/oxfordjournals.molbev.a040352.
6
Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.
Mol Biol Evol. 1986 Sep;3(5):418-26. doi: 10.1093/oxfordjournals.molbev.a040410.
7
Polymorphism and evolution of influenza A virus genes.
Mol Biol Evol. 1986 Jan;3(1):57-74. doi: 10.1093/oxfordjournals.molbev.a040381.
8
Rates and dates of divergence between AIDS virus nucleotide sequences.
Mol Biol Evol. 1988 Jul;5(4):313-30. doi: 10.1093/oxfordjournals.molbev.a040503.
9
Molecular evolutionary clock and the neutral theory.
J Mol Evol. 1987;26(1-2):24-33. doi: 10.1007/BF02111279.
10
Molecular evolutionary rates of oncogenes.
J Mol Evol. 1987;26(1-2):148-56. doi: 10.1007/BF02111288.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验