Department of Plant Biology, University of Minnesota St. Paul, MN, USA.
Front Plant Sci. 2012 Feb 15;3:22. doi: 10.3389/fpls.2012.00022. eCollection 2012.
In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.
在被子植物中,蔗糖摄取转运蛋白(SUT)具有重要功能,特别是在血管组织中。在这里,我们通过分析被子植物 SUT 及其同源转运蛋白,探索了 SUT 的进化起源。我们分析了一种维管束早期陆地植物卷柏(Selaginella moellendorffii)、一种非维管束植物藓类植物(Physcomitrella patens)、一种绿藻(Chlorokybus atmosphyticus)、几种红藻和裂殖酵母(Schizosaccharomyces pombe)中的 SUT 同源物。通过系统发育分析,植物 SUT 可分为三类。先前使用被子植物的研究表明,I 型和 II 型 SUT 定位于质膜,而 III 型 SUT 与液泡膜相关。在绿藻(Chlamydomonas reinhardtii)和团藻(Volvox carterii)中未发现 SUT 同源物。然而,Characeae 藻类绿球藻(Chlorokybus atmosphyticus)含有 SUT 同源物(CaSUT1),系统发育分析表明它是所有分析的其他石松类 SUT 的基础。SUT 存在于红藻和裂殖酵母中,但它们与植物 SUT 的关系不如 CaSUT1 密切。卷柏和藓类植物都编码 II 型和 III 型 SUT,这表明早期陆地植物中存在质膜和液泡蔗糖转运体活性。SUT 转运体可能对于从环境和非维管束植物的细胞内隔室中清除蔗糖很重要。I 型 SUT 仅在真双子叶植物中发现,我们推断它们是从 III 型 SUT 进化而来的,可能是通过缺失液泡靶向序列。真双子叶植物利用 I 型 SUT 进行韧皮部(维管束组织)加载,而单子叶植物则利用 II 型 SUT 进行韧皮部加载。我们表明,大麦中的 HvSUT1,一种 II 型 SUT,恢复了拟南芥 atsuc2(I 型)突变体的生长缺陷。这表明 I 型和 II 型 SUT 独立进化出了相似(可互换)的韧皮部装载转运蛋白功能。