Division of Biostatistics and Epidemiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Risk Anal. 2012 Oct;32(10):1784-97. doi: 10.1111/j.1539-6924.2012.01834.x. Epub 2012 May 28.
Traditional additivity models provide little flexibility in modeling the dose-response relationships of the single agents in a mixture. While the flexible single chemical required (FSCR) methods allow greater flexibility, its implicit nature is an obstacle in the formation of the parameter covariance matrix, which forms the basis for many statistical optimality design criteria. The goal of this effort is to develop a method for constructing the parameter covariance matrix for the FSCR models, so that (local) alphabetic optimality criteria can be applied. Data from Crofton et al. are provided as motivation; in an experiment designed to determine the effect of 18 polyhalogenated aromatic hydrocarbons on serum total thyroxine (T(4)), the interaction among the chemicals was statistically significant. Gennings et al. fit the FSCR interaction threshold model to the data. The resulting estimate of the interaction threshold was positive and within the observed dose region, providing evidence of a dose-dependent interaction. However, the corresponding likelihood-ratio-based confidence interval was wide and included zero. In order to more precisely estimate the location of the interaction threshold, supplemental data are required. Using the available data as the first stage, the Ds-optimal second-stage design criterion was applied to minimize the variance of the hypothesized interaction threshold. Practical concerns associated with the resulting design are discussed and addressed using the penalized optimality criterion. Results demonstrate that the penalized Ds-optimal second-stage design can be used to more precisely define the interaction threshold while maintaining the characteristics deemed important in practice.
传统的加性模型在对混合物中单一组分的剂量反应关系进行建模时缺乏灵活性。虽然灵活的单化学物质所需(FSCR)方法提供了更大的灵活性,但它的隐含性质是形成参数协方差矩阵的障碍,参数协方差矩阵是许多统计最优设计标准的基础。这项工作的目标是开发一种用于构建 FSCR 模型的参数协方差矩阵的方法,以便可以应用(局部)字母最优性标准。提供 Crofton 等人的数据作为动机;在一项旨在确定 18 种多卤代芳烃对血清总甲状腺素(T(4))的影响的实验中,化学物质之间的相互作用具有统计学意义。Gennings 等人根据数据拟合了 FSCR 相互作用阈值模型。相互作用阈值的估计值为正,且处于观察到的剂量范围内,这表明存在剂量依赖性相互作用。然而,相应的基于似然比的置信区间很宽,包括零。为了更准确地估计相互作用阈值的位置,需要补充数据。使用可用数据作为第一阶段,应用 Ds 最优第二阶段设计标准来最小化假设的相互作用阈值的方差。使用惩罚最优性标准讨论并解决了与所得到的设计相关的实际问题。结果表明,可以使用惩罚 Ds 最优第二阶段设计更精确地定义相互作用阈值,同时保持实践中认为重要的特征。