The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
Biochemistry. 2012 Jun 12;51(23):4650-7. doi: 10.1021/bi300572w. Epub 2012 Jun 1.
Photoreceptor ROS-GC1 (rod outer segment membrane guanylate cyclase) is a vital component of phototransduction. It is a bimodal Ca(2+) signal transduction switch, operating between 20 and ∼1000 nM. Modulated by Ca(2+) sensors guanylate cyclase activating proteins 1 and 2 (GCAP1 and GCAP2, respectively), decreasing Ca(2+) from 200 to 20 nM progressively turns it "on", as does the modulation by the Ca(2+) sensor S100B, increasing Ca(2+) from 100 to 1000 nM. The GCAP mode plays a vital role in phototransduction in both rods and cones and the S100B mode in the transmission of neural signals to cone ON-bipolar cells. Through a programmed domain deletion, expression, in vivo fluorescence spectroscopy, and in vitro reconstitution experiments, this study demonstrates that the biochemical mechanisms modulated by two GCAPs in Ca(2+) signaling of ROS-GC1 activity are totally different. (1) They involve different structural domains of ROS-GC1. (2) Their signal migratory pathways are opposite: GCAP1 downstream and GCAP2 upstream. (3) Importantly, the isolated catalytic domain, translating the GCAP-modulated Ca(2+) signal into the generation of cyclic GMP, in vivo, exists as a homodimer, the two subunits existing in an antiparallel conformation. Furthermore, the findings demonstrate that the N-terminally placed signaling helix domain is not required for the catalytic domain's dimeric state. The upstream GCAP2-modulated pathway is the first of its kind to be observed for any member of the membrane guanylate cyclase family. It defines a new model of Ca(2+) signal transduction.
光感受器 ROS-GC1(杆状细胞外段膜鸟苷酸环化酶)是光转导的重要组成部分。它是一种双模态 Ca(2+)信号转导开关,作用于 20 至 ∼1000 nM 之间。Ca(2+)传感器鸟苷酸环化酶激活蛋白 1 和 2(GCAP1 和 GCAP2)分别调节,将 Ca(2+)从 200 降至 20 nM 可逐渐将其“开启”,Ca(2+)传感器 S100B 也有同样的调节作用,将 Ca(2+)从 100 增至 1000 nM。GCAP 模式在视杆细胞和视锥细胞的光转导中起着至关重要的作用,而 S100B 模式在向视锥细胞 ON-双极细胞传递神经信号中也起着重要作用。通过程序化结构域缺失、表达、体内荧光光谱和体外重建实验,本研究表明,两种 GCAP 在 ROS-GC1 活性的 Ca(2+)信号转导中调节的生化机制完全不同。(1)它们涉及 ROS-GC1 的不同结构域。(2)它们的信号迁移途径相反:GCAP1 下游和 GCAP2 上游。(3)重要的是,分离的催化结构域将 GCAP 调节的 Ca(2+)信号转化为 cGMP 的生成,在体内,以同源二聚体的形式存在,两个亚基以反平行构象存在。此外,研究结果表明,位于 N 端的信号螺旋结构域对于催化结构域的二聚体状态不是必需的。上游的 GCAP2 调节途径是膜鸟苷酸环化酶家族中第一个被观察到的途径。它定义了一种新的 Ca(2+)信号转导模型。