Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa.
Anal Bioanal Chem. 2012 Sep;404(4):1247-55. doi: 10.1007/s00216-012-6091-7. Epub 2012 May 30.
Plant diseases caused by plant pathogens substantially reduce crop production every year, resulting in massive economic losses throughout the world. Accurate detection and identification of plant pathogens is fundamental to plant pathogen diagnostics and, thus, plant disease management. Diagnostics and disease-management strategies require techniques to enable simultaneous detection and quantification of a wide range of pathogenic and non-pathogenic microorganisms. Over the past decade, rapid development of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for characterization of microorganisms has enabled substantially improved detection and identification of microorganisms. In the biological sciences, MALDI-TOF MS is used to analyze specific peptides or proteins directly desorbed from intact bacteria, fungal spores, nematodes, and other microorganisms. The ability to record biomarker ions, in a broad m/z range, which are unique to and representative of individual microorganisms, forms the basis of taxonomic identification of microorganisms by MALDI-TOF MS. Recent advances in mass spectrometry have initiated new research, i.e. analysis of more complex microbial communities. Such studies are just beginning but have great potential for elucidation not only of the interactions between microorganisms and their host plants but also those among different microbial taxa living in association with plants. There has been a recent effort by the mass spectrometry community to make data from large scale mass spectrometry experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MALDI-TOF MS as a universal technique for detection of plant pathogens and non-pathogens. The effects of experimental conditions are sufficiently understood, reproducible spectra can be obtained from computational database search, and microorganisms can be rapidly characterized by genus, species, or strain.
每年,植物病原菌都会导致大量农作物减产,给全世界造成巨大的经济损失。准确检测和鉴定植物病原菌是植物病原菌诊断的基础,也是植物病害管理的基础。诊断和疾病管理策略需要能够同时检测和定量分析广泛的病原微生物和非病原微生物的技术。在过去的十年中,基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)技术在微生物特征分析方面的快速发展,使得对微生物的检测和鉴定得到了极大的改进。在生物科学中,MALDI-TOF MS 用于分析直接从完整细菌、真菌孢子、线虫和其他微生物中解吸出来的特定肽或蛋白质。记录广泛的 m/z 范围内的生物标志物离子的能力,这些标志物离子是单个微生物特有的且具有代表性的,这是 MALDI-TOF MS 对微生物进行分类鉴定的基础。质谱技术的最新进展引发了新的研究,即对更复杂的微生物群落进行分析。这些研究才刚刚开始,但具有很大的潜力,不仅可以阐明微生物与其宿主植物之间的相互作用,还可以阐明与植物共生的不同微生物类群之间的相互作用。质谱学界最近努力将大规模质谱实验的数据以集中存储库的形式公开,这一资源可以使 MALDI-TOF MS 成为检测植物病原菌和非病原菌的通用技术。实验条件的影响已经得到充分的理解,可以通过计算数据库搜索获得可重复的光谱,并且可以通过属、种或菌株快速对微生物进行特征描述。