Fujian Provincial Key Laboratory of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, 350002, PR China.
Phys Chem Chem Phys. 2012 Jul 7;14(25):9167-75. doi: 10.1039/c2cp41318c. Epub 2012 May 29.
Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.
人们一直热衷于合成石墨烯(GR)-半导体纳米复合材料作为光催化剂,旨在利用 GR 的优异电子导电性来延长半导体中光激发载流子的寿命,从而提高光活性。然而,关于如何充分利用 GR 的独特电子导电性来设计更高效的 GR-半导体光催化剂的研究工作还相当缺乏。在这里,我们通过减少 GR 缺陷和改善 GR 与半导体 TiO2 之间界面接触的综合策略,展示了一项关于提高 GR-TiO2 纳米复合材料光催化性能的概念验证研究。通过这种方法制备的 GR-TiO2 纳米复合材料能够更充分地利用 GR 的电子导电性,从而更有效地提高 GR-TiO2 在可见光照射下光激发载流子的寿命和转移。这反过来又提高了 GR-TiO2 在环境条件下使用分子氧作为温和氧化剂将醇选择性转化为相应醛的可见光驱动光活性。预计我们目前的工作将为利用智能、更高效的 GR-半导体光催化剂通过多相光催化将太阳能转化为化学能的合理设计提供信息。