Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
BMC Mol Biol. 2012 May 30;13:17. doi: 10.1186/1471-2199-13-17.
Silencing mammalian genes by targeted DNA (cytosine-5) methylation of selected CG sites in the genome would be a powerful technique to analyze epigenomic information and to study the roles of DNA methylation in physiological and pathological states. A promising approach of targeted DNA methylation is based on the ability of split fragments of a monomeric DNA methyltransferase (C5-MTase) to associate and form active enzyme. A few C5-MTases of different specificities have been shown to possess the ability of fragment complementation, but a demonstration of this phenomenon for a C5-MTase, which has CG specificity and thus can be targeted to methylate any CG site, has been lacking. The purpose of this study was to test whether the CG-specific prokaryotic C5-MTase M.SssI shows the phenomenon of fragment complementation.
We show that truncated inactive N-terminal fragments of M.SssI can assemble with truncated inactive C-terminal fragments to form active enzyme in vivo when produced in the same E. coli cell. Overlapping and non-overlapping fragments as well as fragments containing short appended foreign sequences had complementation capacity. In optimal combinations C-terminal fragments started between conserved motif VIII and the predicted target recognizing domain of M.SssI. DNA methyltransferase activity in crude extracts of cells with the best complementing fragment pairs was ~ 4 per cent of the activity of cells producing the full length enzyme. Fusions of two N-terminal and two C-terminal fragments to 21.6 kDa zinc finger domains only slightly reduced complementation ability of the fragments.
The CG-specific DNA methyltransferase M.SssI shows the phenomenon of fragment complementation in vivo in E. coli. Fusion of the split fragments to six unit zinc finger domains does not substantially interfere with the formation of active enzyme. These observations and the large number of complementing fragment combinations representing a wide range of MTase activity offer the possibility to develop M.SssI into a programmable DNA methyltransferase of high specificity.
通过在基因组中选择 CG 位点的靶向 DNA(胞嘧啶-5)甲基化来沉默哺乳动物基因,将是一种分析表观基因组信息并研究 DNA 甲基化在生理和病理状态中作用的强大技术。一种有前途的靶向 DNA 甲基化方法基于单个 DNA 甲基转移酶(C5-MTase)的分裂片段结合并形成活性酶的能力。已经证明几种具有不同特异性的 C5-MTase 具有片段互补的能力,但缺乏针对具有 CG 特异性且因此可以靶向甲基化任何 CG 位点的 C5-MTase 的这种现象的证明。本研究的目的是测试 CG 特异性的原核 C5-MTase M.SssI 是否表现出片段互补现象。
我们表明,当在相同的大肠杆菌细胞中产生时,M.SssI 的截短失活的 N 端片段可以与截短失活的 C 端片段组装形成活性酶。重叠和非重叠片段以及包含短附加外源序列的片段具有互补能力。在最佳组合中,C 端片段在保守基序 VIII 和 M.SssI 的预测靶标识别结构域之间开始。具有最佳互补片段对的细胞的粗提物中的 DNA 甲基转移酶活性约为产生全长酶的细胞的 4%。两个 N 端和两个 C 端片段融合到 21.6 kDa 锌指结构域上仅略微降低了片段的互补能力。
CG 特异性 DNA 甲基转移酶 M.SssI 在大肠杆菌体内表现出片段互补现象。分裂片段与六个单位锌指结构域的融合并没有实质性地干扰活性酶的形成。这些观察结果和大量的互补片段组合代表了广泛的 MTase 活性,为开发具有高特异性的可编程 DNA 甲基转移酶提供了可能性。