Div. of Nephrology, Dept. of Medicine, Stanford Univ., 780 Welch Rd., Suite 106, Palo Alto, CA 94304, USA.
Am J Physiol Renal Physiol. 2012 Aug 15;303(4):F483-91. doi: 10.1152/ajprenal.00062.2012. Epub 2012 May 30.
Extracellular ATP in the cortical collecting duct can inhibit epithelial sodium channels (ENaC) but also stimulate calcium-activated chloride channels (CACC). The relationship between ATP-mediated regulation of ENaC and CACC activity in cortical collecting duct cells has not been clearly defined. We used the mpkCCD(c14) cortical collecting duct cell line to determine effects of ATP on sodium (Na(+)) and chloride (Cl(-)) transport with an Ussing chamber system. ATP, at a concentration of 10(-6) M or less, did not inhibit ENaC-mediated short-circuit current (I(sc)) but instead stimulated a transient increase in I(sc). The macroscopic current-voltage relationship for ATP-inducible current demonstrated that the direction of this ATP response changes from positive to negative when transepithelial voltage (V(te)) is clamped to less than -10 mV. We hypothesized that this negative V(te) might be found under conditions of aldosterone stimulation. We next stimulated mpkCCD(c14) cells with aldosterone (10(-6) M) and then clamped the V(te) to -50 mV, the V(te) of aldosterone-stimulated cells under open-circuit conditions. ATP (10(-6) M) induced a transient increase in negative clamp current, which could be inhibited by flufenamic acid (CACC inhibitor) and BAPTA-AM (calcium chelator), suggesting that ATP stimulates Cl(-) absorption through CACC. Together, our findings suggest that the status of ENaC activity, by controlling V(te), may dictate the direction of ATP-stimulated Cl(-) transport. This interplay between aldosterone and purinergic signaling pathways may be relevant for regulating NaCl transport in cortical collecting duct cells under different states of extracellular fluid volume.
细胞外 ATP 可在皮质集合管中抑制上皮钠通道 (ENaC),也可刺激钙激活氯离子通道 (CACC)。然而,ATP 对 ENaC 的调节与皮质集合管细胞中 CACC 活性之间的关系尚未明确界定。本研究利用 mpkCCD(c14)皮质集合管细胞系,通过 Ussing 室系统,确定了 ATP 对钠 (Na(+)) 和氯 (Cl(-)) 转运的影响。浓度为 10(-6) M 或更低的 ATP 不会抑制 ENaC 介导的短路电流 (I(sc)),反而会刺激 I(sc)的短暂增加。ATP 诱导电流的宏观电流-电压关系表明,当跨上皮电压 (V(te)) 钳制到小于-10 mV 时,这种 ATP 反应的方向从正变为负。我们假设,在醛固酮刺激下可能会出现这种负的 V(te)。接下来,我们用醛固酮 (10(-6) M) 刺激 mpkCCD(c14)细胞,然后将 V(te)钳制到-50 mV,这是醛固酮刺激细胞在开路条件下的 V(te)。ATP(10(-6) M) 诱导了短暂的负钳位电流增加,这种增加可被氟芬那酸 (CACC 抑制剂) 和 BAPTA-AM(钙螯合剂) 抑制,表明 ATP 通过 CACC 刺激 Cl(-)吸收。综上所述,我们的研究结果表明,ENaC 活性的状态通过控制 V(te),可能决定了 ATP 刺激的 Cl(-)转运的方向。这种醛固酮和嘌呤能信号通路之间的相互作用可能与不同细胞外液体积状态下皮质集合管细胞中 NaCl 转运的调节有关。