Laboratory of Stem Cell Bioengineering (LSCB), Institute of Bioengineering and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
Lab Chip. 2012 Aug 21;12(16):2843-9. doi: 10.1039/c2lc40317j. Epub 2012 May 31.
We report a reliable strategy to perform automated image cytometry of single (non-adherent) stem cells captured in microfluidic traps. The method rapidly segments images of an entire microfluidic chip based on the detection of horizontal edges of microfluidic channels, from where the position of the trapped cells can be derived and the trapped cells identified with very high precision (>97%). We used this method to successfully quantify the efficiency and spatial distribution of single-cell loading of a microfluidic chip comprised of 2048 single-cell traps. Furthermore, cytometric analysis of trapped primary hematopoietic stem cells (HSC) faithfully recapitulated the distribution of cells in the G1 and S/G2-M phase of the cell cycle that was measured by flow cytometry. This approach should be applicable to automatically track single live cells in a wealth of microfluidic systems.
我们报告了一种可靠的策略,可对微流控阱中捕获的单个(非贴壁)干细胞进行自动化图像细胞计量分析。该方法可快速基于微流道水平边缘的检测对整个微流控芯片的图像进行分割,从而可以得出捕获细胞的位置,并非常精确地(>97%)识别捕获细胞。我们使用该方法成功地量化了由 2048 个单细胞阱组成的微流控芯片中单细胞加载的效率和空间分布。此外,对捕获的原代造血干细胞(HSC)的细胞计量分析忠实地再现了通过流式细胞术测量的细胞周期 G1 和 S/G2-M 期的细胞分布。这种方法应该适用于自动跟踪大量微流控系统中的单个活细胞。