Suppr超能文献

铜输出机械与人类细胞中谷胱甘肽平衡的功能伙伴关系。

Functional partnership of the copper export machinery and glutathione balance in human cells.

机构信息

Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

J Biol Chem. 2012 Aug 3;287(32):26678-87. doi: 10.1074/jbc.M112.381178. Epub 2012 May 30.

Abstract

Cells use the redox properties of copper in numerous physiologic processes, including antioxidant defense, neurotransmitter biosynthesis, and angiogenesis. Copper delivery to the secretory pathway is an essential step in copper utilization and homeostatic maintenance. We demonstrate that the glutathione/glutathione disulfide (GSH/GSSG) pair controls the copper transport pathway by regulating the redox state of a copper chaperone Atox1. GSSG oxidizes copper-coordinating cysteines of Atox1 with the formation of an intramolecular disulfide. GSH alone is sufficient to reduce the disulfide, restoring the ability of Atox1 to bind copper; glutaredoxin 1 facilitates this reaction when GSH is low. In cells, high GSH both reduces Atox1 and is required for cell viability in the absence of Atox1. In turn, Atox1, which has a redox potential similar to that of glutaredoxin, becomes essential for cell survival when GSH levels decrease. Atox1(+/+) cells resist short term glutathione depletion, whereas Atox1(-/-) cells under the same conditions are not viable. We conclude that GSH balance and copper homeostasis are functionally linked and jointly maintain conditions for copper secretion and cell proliferation.

摘要

细胞利用铜的氧化还原特性参与众多生理过程,包括抗氧化防御、神经递质生物合成和血管生成。铜向分泌途径的输送是铜利用和体内平衡维持的关键步骤。我们证明,谷胱甘肽/谷胱甘肽二硫化物(GSH/GSSG)对铜伴侣蛋白 Atox1 的氧化还原状态的调节控制着铜转运途径。GSSG 通过形成分子内二硫键氧化 Atox1 上铜配位半胱氨酸。仅 GSH 就足以还原二硫键,恢复 Atox1 结合铜的能力;当 GSH 水平较低时,谷氧还蛋白 1 促进该反应。在细胞中,高 GSH 既能还原 Atox1,又能在没有 Atox1 的情况下维持细胞活力。反过来,当 GSH 水平下降时,氧化还原电位与谷氧还蛋白相似的 Atox1 对细胞存活变得至关重要。Atox1(+/+)细胞能够抵抗短期谷胱甘肽耗竭,而在相同条件下的 Atox1(-/-)细胞则无法存活。我们的结论是,GSH 平衡和铜稳态在功能上是相关的,共同维持铜分泌和细胞增殖的条件。

相似文献

1
Functional partnership of the copper export machinery and glutathione balance in human cells.
J Biol Chem. 2012 Aug 3;287(32):26678-87. doi: 10.1074/jbc.M112.381178. Epub 2012 May 30.
2
An expanding range of functions for the copper chaperone/antioxidant protein Atox1.
Antioxid Redox Signal. 2013 Sep 20;19(9):945-57. doi: 10.1089/ars.2012.5086. Epub 2013 Feb 6.
3
5
The N-terminal metal-binding site 2 of the Wilson's Disease Protein plays a key role in the transfer of copper from Atox1.
J Biol Chem. 2004 Apr 9;279(15):15376-84. doi: 10.1074/jbc.M400053200. Epub 2004 Jan 30.
6
Thiol-based copper handling by the copper chaperone Atox1.
IUBMB Life. 2017 Apr;69(4):246-254. doi: 10.1002/iub.1620. Epub 2017 Mar 15.
7
Conserved residues modulate copper release in human copper chaperone Atox1.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11158-63. doi: 10.1073/pnas.0802928105. Epub 2008 Aug 6.
8
Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein.
J Biol Chem. 2003 Jun 6;278(23):20821-7. doi: 10.1074/jbc.M212437200. Epub 2003 Apr 4.
10
Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6951-6. doi: 10.1073/pnas.1012899108. Epub 2011 Apr 11.

引用本文的文献

2
Copper in melanoma: At the crossroad of protumorigenic and anticancer roles.
Redox Biol. 2025 Apr;81:103552. doi: 10.1016/j.redox.2025.103552. Epub 2025 Feb 15.
3
Copper in cancer: friend or foe? Metabolism, dysregulation, and therapeutic opportunities.
Cancer Commun (Lond). 2025 May;45(5):577-607. doi: 10.1002/cac2.70005. Epub 2025 Feb 13.
6
Mammalian copper homeostasis: physiological roles and molecular mechanisms.
Physiol Rev. 2025 Jan 1;105(1):441-491. doi: 10.1152/physrev.00011.2024. Epub 2024 Aug 22.
7
Role of copper and SOD3-mediated extracellular redox regulation in tumor progression.
J Clin Biochem Nutr. 2024 Jul;75(1):1-6. doi: 10.3164/jcbn.24-14. Epub 2024 Apr 6.
8
Interplay between Copper, Phosphatidylserine, and α-Synuclein Suggests a Link between Copper Homeostasis and Synaptic Vesicle Cycling.
ACS Chem Neurosci. 2024 Aug 7;15(15):2884-2896. doi: 10.1021/acschemneuro.4c00280. Epub 2024 Jul 16.
9
The physiological and pathophysiological roles of copper in the nervous system.
Eur J Neurosci. 2024 Jul;60(1):3505-3543. doi: 10.1111/ejn.16370. Epub 2024 May 15.
10
Copper Homeostasis in the Model Organism .
Cells. 2024 Apr 23;13(9):727. doi: 10.3390/cells13090727.

本文引用的文献

1
A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.
Free Radic Biol Med. 2011 Jul 1;51(1):69-77. doi: 10.1016/j.freeradbiomed.2011.03.017. Epub 2011 Mar 24.
2
Cellular copper levels determine the phenotype of the Arg875 variant of ATP7B/Wilson disease protein.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5390-5. doi: 10.1073/pnas.1014959108. Epub 2011 Mar 15.
3
Copper trafficking mechanism of CXXC-containing domains: insight from the pH-dependence of their Cu(I) affinities.
J Am Chem Soc. 2011 Mar 9;133(9):2983-8. doi: 10.1021/ja1091547. Epub 2011 Feb 16.
4
ATP7A-related copper transport diseases-emerging concepts and future trends.
Nat Rev Neurol. 2011 Jan;7(1):15-29. doi: 10.1038/nrneurol.2010.180.
5
Elevated copper remodels hepatic RNA processing machinery in the mouse model of Wilson's disease.
J Mol Biol. 2011 Feb 11;406(1):44-58. doi: 10.1016/j.jmb.2010.12.001. Epub 2010 Dec 10.
6
Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B.
J Biol Chem. 2010 Aug 27;285(35):27111-27121. doi: 10.1074/jbc.M110.154468. Epub 2010 Jun 21.
7
Effect of glutathione depletion on removal of copper from LEC rat livers by tetrathiomolybdate.
J Inorg Biochem. 2010 Aug;104(8):858-62. doi: 10.1016/j.jinorgbio.2010.04.001. Epub 2010 Apr 14.
8
Glutathione synthesis inhibitor butathione sulfoximine regulates ceruloplasmin by dual but opposite mechanism: Implication in hepatic iron overload.
Free Radic Biol Med. 2010 Jun 1;48(11):1492-500. doi: 10.1016/j.freeradbiomed.2010.02.029. Epub 2010 Mar 6.
9
Interactions between copper-binding sites determine the redox status and conformation of the regulatory N-terminal domain of ATP7B.
J Biol Chem. 2010 Feb 26;285(9):6327-36. doi: 10.1074/jbc.M109.074633. Epub 2009 Dec 23.
10
Structural organization of human Cu-transporting ATPases: learning from building blocks.
J Biol Inorg Chem. 2010 Jan;15(1):47-59. doi: 10.1007/s00775-009-0595-4. Epub 2009 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验