Suppr超能文献

缺失类别协变量数据在群体药代动力学分析中处理方法的性能评估。

Performance of methods for handling missing categorical covariate data in population pharmacokinetic analyses.

机构信息

Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, the Netherlands.

出版信息

AAPS J. 2012 Sep;14(3):601-11. doi: 10.1208/s12248-012-9373-2. Epub 2012 May 31.

Abstract

In population pharmacokinetic analyses, missing categorical data are often encountered. We evaluated several methods of performing covariate analyses with partially missing categorical covariate data. Missing data methods consisted of discarding data (DROP), additional effect parameter for the group with missing data (EXTRA), and mixture methods in which the mixing probability was fixed to the observed fraction of categories (MIX(obs)), based on the likelihood of the concentration data (MIX(conc)), or combined likelihood of observed covariate data and concentration data (MIX(joint)). Simulations were implemented to study bias and imprecision of the methods in datasets with equal-sized and unbalanced category ratios for a binary covariate as well as datasets with non-random missingness (MNAR). Additionally, the performance and feasibility of implementation was assessed in two real datasets. At either low (10%) or high (50%) levels of missingness, all methods performed similarly well. Performance was similar for situations with unbalanced datasets (3:1 covariate distribution) and balanced datasets. In the MNAR scenario, the MIX methods showed a higher bias in the estimation of CL and covariate effect than EXTRA. All methods could be applied to real datasets, except DROP. All methods perform similarly at the studied levels of missingness, but the DROP and EXTRA methods provided less bias than the mixture methods in the case of MNAR. However, EXTRA was associated with inflated type I error rates of covariate selection, while DROP handled data inefficiently.

摘要

在群体药代动力学分析中,经常会遇到缺失的分类数据。我们评估了几种方法,用于对部分缺失的分类协变量数据进行协变量分析。缺失数据方法包括丢弃数据(DROP)、为缺失数据的组添加额外的效应参数(EXTRA)以及混合方法,其中混合概率固定为观察到的类别分数(MIX(obs)),基于浓度数据的似然性(MIX(conc))或观察到的协变量数据和浓度数据的联合似然性(MIX(joint))。我们进行了模拟,以研究在具有相同大小和不平衡分类比例的二元协变量数据集以及具有非随机缺失(MNAR)的数据集的方法中的偏差和不精确性。此外,我们还在两个真实数据集评估了实施的性能和可行性。在缺失率较低(10%)或较高(50%)的情况下,所有方法的性能都非常相似。在不平衡数据集(3:1 协变量分布)和平衡数据集的情况下,性能相似。在 MNAR 情况下,与 EXTRA 相比,MIX 方法在 CL 和协变量效应的估计中显示出更高的偏差。除 DROP 外,所有方法都可应用于真实数据集。在研究的缺失水平下,所有方法的性能都相似,但在 MNAR 的情况下,DROP 和 EXTRA 方法比混合方法提供的偏差更小。然而,EXTRA 与协变量选择的膨胀Ⅰ型错误率相关,而 DROP 则低效地处理数据。

相似文献

6
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.非ignorable协变量缺失数据问题中的经验似然
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.

引用本文的文献

5
Covariate modeling in pharmacometrics: General points for consideration.药物代谢动力学中的协变量建模:一般注意事项。
CPT Pharmacometrics Syst Pharmacol. 2024 May;13(5):710-728. doi: 10.1002/psp4.13115. Epub 2024 Apr 2.

本文引用的文献

1
Piraña and PCluster: a modeling environment and cluster infrastructure for NONMEM.Piraña 和 PCluster:NONMEM 的建模环境和集群基础设施。
Comput Methods Programs Biomed. 2011 Jan;101(1):72-9. doi: 10.1016/j.cmpb.2010.04.018. Epub 2010 Jun 2.
2
Missing data analysis: making it work in the real world.缺失数据分析:使其在现实世界中发挥作用。
Annu Rev Psychol. 2009;60:549-76. doi: 10.1146/annurev.psych.58.110405.085530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验