Suppr超能文献

单标志物与多标志物关联检验的效能。

Power of single- vs. multi-marker tests of association.

机构信息

Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106-7281, USA.

出版信息

Genet Epidemiol. 2012 Jul;36(5):480-7. doi: 10.1002/gepi.21642. Epub 2012 May 30.

Abstract

Current genome-wide association studies still heavily rely on a single-marker strategy, in which each single nucleotide polymorphism (SNP) is tested individually for association with a phenotype. Although methods and software packages that consider multimarker models have become available, they have been slow to become widely adopted and their efficacy in real data analysis is often questioned. Based on conducting extensive simulations, here we endeavor to provide more insights into the performance of simple multimarker association tests as compared to single-marker tests. The results reveal the power advantage as well as disadvantage of the two- vs. the single-marker test. Power differentials depend on the correlation structure among tag SNPs, as well as that between tag SNPs and causal variants. A two-marker test has relatively better performance than single-marker tests when the correlation of the two adjacent markers is high. However, using HapMap data, two-marker tests tended to have a greater chance of being less powerful than single-marker tests, due to constraints on the number of actual possible haplotypes in the HapMap data. Yet, the average power difference was small whenever the one-marker test is more powerful, while there were many situations where the two-marker test can be much more powerful. These findings can be useful to guide analyses of future studies.

摘要

目前的全基因组关联研究仍然严重依赖于单标记策略,其中每个单核苷酸多态性(SNP)都单独测试与表型的关联。尽管考虑多标记模型的方法和软件包已经可用,但它们的广泛采用速度较慢,其在实际数据分析中的功效经常受到质疑。基于广泛的模拟,我们在这里努力提供更多的见解,以了解与单标记测试相比,简单的多标记关联测试的性能。结果揭示了两种标记测试相对于单标记测试的优势和劣势。功率差异取决于标记 SNP 之间以及标记 SNP 与因果变异体之间的相关结构。当两个相邻标记之间的相关性较高时,双标记测试比单标记测试具有相对更好的性能。然而,由于 HapMap 数据中实际可能的单倍型数量的限制,使用 HapMap 数据时,双标记测试往往比单标记测试的效能更小。然而,每当单标记测试更强大时,平均功率差异很小,而在许多情况下,双标记测试可以更强大。这些发现可以帮助指导未来研究的分析。

相似文献

1
Power of single- vs. multi-marker tests of association.单标志物与多标志物关联检验的效能。
Genet Epidemiol. 2012 Jul;36(5):480-7. doi: 10.1002/gepi.21642. Epub 2012 May 30.
4
Efficiency and power in genetic association studies.基因关联研究中的效率与效能
Nat Genet. 2005 Nov;37(11):1217-23. doi: 10.1038/ng1669. Epub 2005 Oct 23.
9
Tag SNP selection for association studies.用于关联研究的标签单核苷酸多态性选择
Genet Epidemiol. 2004 Dec;27(4):365-74. doi: 10.1002/gepi.20028.

引用本文的文献

本文引用的文献

3
The Bayesian lasso for genome-wide association studies.贝叶斯套索在全基因组关联研究中的应用。
Bioinformatics. 2011 Feb 15;27(4):516-23. doi: 10.1093/bioinformatics/btq688. Epub 2010 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验