Suppr超能文献

基于层层组装制备的层状双氢氧化物/聚(N-异丙基丙烯酰胺)超薄膜的温度控制电化学开关。

Temperature-controlled electrochemical switch based on layered double hydroxide/poly(N-isopropylacrylamide) ultrathin films fabricated via layer-by-layer assembly.

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.

出版信息

Langmuir. 2012 Jun 26;28(25):9535-42. doi: 10.1021/la3012603. Epub 2012 Jun 15.

Abstract

In this paper we report the fabrication of layered double hydroxide (LDH) nanoparticles/poly(N-isopropylacrylamide) (pNIPAM) ultrathin films (UTFs) via the layer-by-layer assembly technique, and their switchable electrocatalytic performance in response to temperature stimuli was demonstrated. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of the (LDH/pNIPAM)(n) UTFs; an interaction based on hydrogen bonding between LDH nanoparticles and pNIPAM was confirmed by X-ray-photoelectron spectroscopy and Fourier transform infrared spectroscopy. Temperature-triggered cyclic voltammetry and electrochemical impedance spectroscopy switch for the UTFs was obtained between 20 and 40 °C, accompanied by reversible changes in surface topography and film thickness revealed by atomic force microscopy and ellipsometry, respectively. The electrochemical on-off property of the temperature-controlled (LDH/pNIPAM)(n) UTFs originates from the contraction-expansion configuration of pNIPAM with low-high electrochemical impedance. In addition, a switchable electrocatalytic behavior of the (LDH/pNIPAM)(n) UTFs toward the oxidation of glucose was observed, resulting from the temperature-controlled charge transfer rate. Therefore, this work provides a facile approach for the design and fabrication of a well-ordered command interface with a temperature-sensitive property, which can be potentially applied in electrochemical sensors and switching.

摘要

本文通过层层自组装技术制备了层状双氢氧化物(LDH)纳米粒子/聚(N-异丙基丙烯酰胺)(pNIPAM)超薄膜(UTFs),并证明了其对温度刺激的可切换电催化性能。X 射线衍射和紫外可见吸收光谱表明,(LDH/pNIPAM)(n)UTFs 具有周期性的层状结构,且具有均匀和规则的生长;X 射线光电子能谱和傅里叶变换红外光谱证实了 LDH 纳米粒子和 pNIPAM 之间基于氢键的相互作用。UTFs 在 20 至 40°C 之间获得了温度触发的循环伏安法和电化学阻抗谱开关,分别通过原子力显微镜和椭偏仪可得到表面形貌和薄膜厚度的可逆变化。温度控制的(LDH/pNIPAM)(n)UTFs 的电化学开-关特性源于 pNIPAM 的收缩-膨胀构象,其具有高低电化学阻抗。此外,观察到(LDH/pNIPAM)(n)UTFs 对葡萄糖氧化的可切换电催化行为,这是由于温度控制的电荷转移速率。因此,这项工作为具有温度敏感性的有序指令界面的设计和制造提供了一种简便的方法,可潜在应用于电化学传感器和开关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验