Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada.
J Chem Inf Model. 2012 Jun 25;52(6):1529-41. doi: 10.1021/ci200626m. Epub 2012 Jun 13.
Active site mutations that disrupt drug binding are an important mechanism of drug resistance. Computational methods capable of predicting resistance a priori are poised to become extremely useful tools in the fields of drug discovery and treatment design. In this paper, we describe an approach to predicting drug resistance on the basis of Dead-End Elimination and MM-PBSA that requires no prior knowledge of resistance. Our method utilizes a two-pass search to identify mutations that impair drug binding while maintaining affinity for the native substrate. We use our method to probe resistance in four drug-target systems: isoniazid-enoyl-ACP reductase (tuberculosis), ritonavir-HIV protease (HIV), methotrexate-dihydrofolate reductase (breast cancer and leukemia), and gleevec-ABL kinase (leukemia). We validate our model using clinically known resistance mutations for all four test systems. In all cases, the model correctly predicts the majority of known resistance mutations.
活性位点突变破坏药物结合是耐药性的一个重要机制。能够预先预测耐药性的计算方法有望成为药物发现和治疗设计领域非常有用的工具。在本文中,我们描述了一种基于死端消除和 MM-PBSA 的预测药物耐药性的方法,该方法不需要事先了解耐药性。我们的方法利用双通搜索来识别削弱药物结合但保持对天然底物亲和力的突变。我们使用该方法在四个药物靶系统中探测耐药性:异烟肼酰基-ACP 还原酶(结核病)、利托那韦-HIV 蛋白酶(HIV)、甲氨蝶呤-二氢叶酸还原酶(乳腺癌和白血病)和格列卫-ABL 激酶(白血病)。我们使用所有四个测试系统的临床已知耐药突变来验证我们的模型。在所有情况下,该模型都正确预测了大多数已知的耐药突变。